Return to search

Understanding distortion in silicon-germanium transistors, and its application to RF circuits

In an increasingly crowded frequency spectrum with strong interfering signals, the distortion performance, or the linearity, of RF circuits is key to their ability to reject strong intermodulation terms that can corrupt the weak but desired carrier signal. A standard figure-of-merit for small-signal linearity is the Input/Output Third Order Intercept Point (IIP3/OIP3), which represents the input/output power level at which the power of fundamental frequency (PFUND) become equal to that of the third-order intermodulation product (P3rd). Clearly, a higher IIP3 number yields improved linearity, and is highly desirable for many circuits.


The thesis will focus on describing the issues that can stem in telecommunication systems from these non-linearities. These non-linearities can be modeled by using a rigorous mathematical expansion based on the Volterra Series. The thesis will "demystify" the Volterra series so that it could be readily understood by the circuit designer, without over burdening him with too much mathematics. Using this series, the distortion performance of an amplifier will be quantified based on IIP3 metrics as described above. Having identified sources of non-linearities, and quantifying the effect of each non-linearity on total IIP3 of an amplifier, the thesis will focus on mitigating these non-linearity sources to increase the overall IIP3 of an amplifier. The techniques discussed to do this are based on both novel device design as well as novel circuit techniques. The amplifiers under discussion will all be SiGe based, due to their exemplary RF performances (comparable to III-V devices) at the fraction of the cost.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/31729
Date17 November 2009
CreatorsSeth, Sachin
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeThesis

Page generated in 0.0023 seconds