Return to search

Application of bioinformatics in studies of sphingolipid biosynthesis

The studies in this dissertation demonstrate that the gene expression pathway maps are useful tools to notice alteration in different branches of sphingolipid biosynthesis pathway based on microarray and other transcriptomic analysis. To facilitate the integrative analysis of gene expression and sphingolipid amounts, updated pathway maps were prepared using an open access visualization tool, Pathvisio v1.1. The datasets were formatted using Perl scripts and visualized with the aid of color coded pathway diagrams. Comparative analysis of transcriptomics and sphingolipid alterations from experimental studies and published literature revealed 72.8 % correlation between mRNA and sphingolipid differences (p-value < 0.0001 by the Fisher's exact test).The high correlation between gene expression differences and sphingolipid alterations highlights the application of this tool to evaluate molecular changes associate with sphingolipid alterations as well as predict differences in specific metabolites that can be experimentally verified using sensitive approaches such as mass spectrometry. In addition, bioinformatics sequence analysis was used to identify transcripts for sphingolipid biosynthesis enzyme 3-ketosphinganine reductase, and homology modeling studies helped in the evaluation of a cell line defective in sphingolipid metabolism due to mutation in the enzyme serine palmitoyltransferase, the first enzyme of de novo biosynthesis pathway. Hence, the combination of different bioinformatics approaches, including protein and DNA sequence analysis, structure modeling and pathway diagrams can provide valuable inputs for biochemical and molecular studies of sphingolipid metabolism.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/34842
Date17 May 2010
CreatorsMomin, Amin Altaf
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0027 seconds