Return to search

A CMOS radio-frequency front-end for multi-standard wireless communications

The explosive growth of wireless communication market has led the development of low-cost, highly-integrated wireless communication systems. Even though most blocks in the front-end have successfully been integrated by using the CMOS technology, it is still a formidable challenge to integrate the entire front-end. Thus, the objective of this research is to demonstrate the feasibility of the integrated front-end by using improved circuit techniques as well as the improved process technologies. This dissertation proposes an improved control scheme to enhance the high-power handling capability of an antenna switch.
As a part of this research, an antenna switch controller for a GaAs antenna switch was first developed to enhance the performances of the GaAs antenna switch by using the boosted control voltage. To enhance the efficiency of the front-end, efficiency improvement techniques for the antenna switch controller has also been studied. With the suggested efficiency improvement techniques, a fully-integrated antenna switch was implemented using the SOI technology, and exceeding performances over many commercial products for watt-level high-power applications have been successfully demonstrated. As an effort to improve the efficiency of a power amplifier, a linear envelope detector was also implemented, and the results show that the envelope detector is suitable for dynamic biasing of the power amplifier. The research presented in this dissertation, thus, provides a low-cost and high-performance solution for highly-integrated RF front-end used in various wireless communication systems.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/37250
Date26 August 2010
CreatorsCha, Jeongwon
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0028 seconds