Return to search

Eliminating Design Alternatives under Interval-Based Uncertainty

Typically, design is approached as a sequence of decisions in which designers select what they believe to be the best alternative in each decision. While this approach can be used to arrive at a final solution quickly, it is unlikely to result in the most-preferred solution. The reason for this is that all the decisions in the design process are coupled. To determine the most preferred alternative in the current decision, the designer would need to know the outcomes of all future decisions, information that is currently unavailable or indeterminate. Since the designer cannot select a single alternative because of this indeterminate (interval-based) uncertainty, a set-based design approach is introduced. The approach is motivated by the engineering practices at Toyota and is based on the structure of the Branch and Bound Algorithm. Instead of selecting a single design alternative that is perceived as being the most preferred at the time of the decision, the proposed set-based design approach eliminates dominated design alternatives: rather than selecting the best, eliminate the worst. Starting from a large initial design space, the approach sequentially reduces the set of non-dominated design alternatives until no further reduction is possible ??e remaining set cannot be rationally differentiated based on the available information. A single alternative is then selected from the remaining set of non-dominated designs.

In this thesis, the focus is on the elimination step of the set-based design method: A criterion for rational elimination under interval-based uncertainty is derived. To be efficient, the criterion takes into account shared uncertainty ??certainty shared between design alternatives. In taking this uncertainty into account, one is able to eliminate significantly more design alternatives, improving the efficiency of the set-based design approach. Additionally, the criterion uses a detailed reference design to allow more elimination of inferior design sets without evaluating each alternative in that set. The effectiveness of this elimination is demonstrated in two examples: a beam design and a gearbox design.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/7218
Date19 July 2005
CreatorsRekuc, Steven Joseph
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeThesis
Format1607115 bytes, application/pdf

Page generated in 0.0054 seconds