Return to search

Efeito de vacinas alopática e homeopática frente a Mycobacterium spp em diferentes modelos animais / Effect of vaccines and homeophatic Allopathic Mycobacterium spp front in different animal models

Submitted by Erika Demachki (erikademachki@gmail.com) on 2014-09-23T20:38:26Z
No. of bitstreams: 2
Cavalcanti, Marcos Antonio Rocha - Tese - 2013.pdf: 964919 bytes, checksum: 063182e6e38ba2cb24520dc287625492 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2014-09-23T20:48:47Z (GMT) No. of bitstreams: 2
Cavalcanti, Marcos Antonio Rocha - Tese - 2013.pdf: 964919 bytes, checksum: 063182e6e38ba2cb24520dc287625492 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-09-23T20:48:47Z (GMT). No. of bitstreams: 2
Cavalcanti, Marcos Antonio Rocha - Tese - 2013.pdf: 964919 bytes, checksum: 063182e6e38ba2cb24520dc287625492 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2013-03-26 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The development of new vaccines in the control of various diseases in cattle has been increasing the marketing of animals and animal products. Thus we tested two vaccines, a biotherapy homeopathicvaccine and other recombinantallopathic vaccine,using mycobacteria in their formulations that were subsequently tested in mice and cattle. In order to study the prophylactic effect of homeopathic vaccine and the potency to be used as a vaccine, we used a model of immunizations and infections. To this end, we used mice female of BALB / c lineage which were distributed in 15 groups of three animals each. To assess the possible immune mechanisms involved in homeopathic biotherapy vaccinations we used Mycobacterium massiliense. The biotherapics were prepared from mycobacterial M. massiliense. After infections and immunizations, the animals were euthanized and their livers and spleens were harvested, macerated, homogenized, plated and incubated at 37 ° C for five days. Then we did the counting of colony forming units (CFU) of bacteria recovered from organs and according to the results obtained were selected the potencies11cH and 19cH to be tested as vaccine, because they have shown more homogeneous results. In the animals that were immunized with 19 cHthere were induction of IgG2a class antibodies specific to M. massiliense similar to (0.18 ± 0.07) infections alone (0.19 ± .02). To assess allopathic vaccine protection was used mycobacterium (Mycobacterium smegmatis mc2155 with PLA71/Fusion) in cattle. After allopathic vaccinations, blood was collected and serum was removed for ELISA test. Animals that received the recombinant live vaccine expressing protein of fusion showed greater levels of specific antibodies (p <0.01). This study evaluated the effect ofhomeopathic biotherapy vaccine composed of M. massiliense and allopathicvaccine formulated with M.smegmatis recombinant in different animal models, thus concluding that both vaccines and vaccines homeopathic and allopathic using different kinds of mycobacteria can induce humoral immune response in an animal model. / O desenvolvimento de novas vacinas no controle de várias doenças na bovinocultura vem incrementando a comercialização de animais e produtos de origem animal. Com isso testaram-se duas vacinas, uma vacina bioterápica homeopática e outra vacina alopática recombinante, utilizando micobacterias em suas formulações que posteriormente foram testadas em camundongos e bovinos. Com o objetivo de estudar o efeito profilático da vacina homeopática e a potência a ser utilizada como vacina, foi empregado um modelo de imunizações e infecções. Para tal, utilizou-se camundongos fêmeas da linhagem BALB/c as quais foram distribuídas em 15 grupos com três animais cada. Para avaliar os possíveis mecanismos imunológicos envolvidos nas vacinações bioterápicas homeopáticas utilizou-se Mycobacterium massiliense. Os bioterápicos foram preparados a partir de micobactérias M. massiliense. Após as imunizações e infecções, os animais foram eutanaziados e deles colheram-se os fígados e baços, os quais foram macerados, homogeneizados, plaqueados e incubados a 37ºC durante 5 dias. Em seguida, fez-se a contagem de unidades formadoras de colônias (UFC) das bactérias recuperadas dos órgãos e de acordo com os resultados obtidos foram selecionadas as potências 11cH e 19cH para serem testadas como vacina, por apresentarem resultados mais homogêneos. Nos animais imunizados com 19 cH houve indução da produção de anticorpos da classe IgG2a específicos para M. massiliense semelhantes à (0,18 ± 0,07) infecção sozinha (0,19 ± 0,02). Para avaliar a proteção da vacina alopática, foi utilizada a micobactéria (Mycobacterium smegmatis mc2155 com PLA71/Fusão), em bovinos. Após as vacinações alopáticas foi coletado sangue e retirou-se o soro para o teste de ELISA. Animais que receberam a vacina viva recombinante expressando a proteína de fusão apresentaram níveis maiores de anticorpos específicos (p< 0,01). Com este estudo avaliou-se os efeitos da vacina bioterápica homeopática composta de M. massiliense e de vacina alopática formulada com M. smegmatis recombinante em diferentes modelos animais, concluindo assim que tanto as vacinas homeopáticas e vacinas alopáticas usando diferentes tipos de micobactérias podem induzir resposta imune humoral em modelo animal.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.bc.ufg.br:tede/3148
Date26 March 2013
CreatorsCavalcanti, Marcos Antônio Rocha
ContributorsJunqueira-Kipnis, Ana Paula, Nunes, Romão da Cunha, Rezende, Cintia Silva Minafra e, Junqueira-Kipnis, Ana Paula, Alves Jr, José Roberto Ferreira, Resi, Michelle Guerreiro dos, Fioravanti, Maria Clorinda Soares, Martins, Márcio Eduardo Pereira
PublisherUniversidade Federal de Goiás, Programa de Pós-graduação em Ciência Animal (EVZ), UFG, Brasil, Escola de Veterinária e Zootecnia - EVZ (RG)
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFG, instname:Universidade Federal de Goiás, instacron:UFG
Rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/, info:eu-repo/semantics/openAccess
Relation4581960685150189167, 600, 600, 600, 600, -6217552114249094582, 6702961356132007056, 2075167498588264571, Almeida, C.M.C.; Júnior Vasconcelos, A.C.; Kipnis, A.; Andrade, A.L.; Junqueira- Kipnis, A.P. Humoral Immune Response of Tuberculosis Patients in Brazil Indicate Recognition of Mycobacterium tuberculosis MPT-51 and GlcB. Clin Vac Immunol. 2008 15 (3): 579- 581. Ameni, G.; Vordermeier, M.; Aseffa, A.; Young, D.B.; Hewinson, R.G. Field evaluation of the efficacy of Mycobacterium bovis bacillus Calmette–Guerin against bovine tuberculosis in neonatal calves in Ethiopia. Clin Vaccine Immunol. 2010 17(10): 1533– 1538. Andersen, P.; Doherty, T.M. The success and failure of BCG — implications for a novel tuberculosis vaccine. Nat. Rev. Microbiol. 2005 3: 656–662 Anon. Bovine tuberculosis errradications: uniform methods and rules. United States Departament of Agriculture, Animal and Plant Health Inspection Service, Washington, 2004. Backus, K.M.; Boshoff, H.I.; Barry, C.S.; Boutureira, O.; Patel, M.K. Uptake of unnatural trehalose analogs as a reporter for Mycobacterium tuberculosis. Nat. Chem. Biol. 2011 7: 228. Black, G.F.; Weir, R.E.; Floyd, S.; Bliss, L.; Warndorff, D.K.; Crampin, A.C.; Ngwira, B.; Sichali, L.; Nazareth, B.; Blackwell, J.M.; Branson, K.; Chaguluka, S.D.; Donovan, L.; Jarman, E.; King, E.; Fine, P.E.M.; Dockrell, H.M. BCG-induced increase in interferon gamma response to mycobacterial antigens and efficacy of BCG vaccination in Malawi and the UK: two randomised controlled studies. Lancet. 2002 359: 1393-1401. Brandt, L.; Cunha, J.F.; Olsen, A.W.; Chilima, B.; Hirsch, P.; Appelberg, R.; Andersen, P. Failure of the Mycobacterium bovis BCG Vaccine: Some Species of Environmental Mycobacteria Block Multiplication of BCG and Induction of Protective Immunity to Tuberculosis. Inf. Immun. 2002 70 (2) 672: 678. Buddle, B.M.; Wards, B.J.; Aldwell, F.E.; Collins, D.M.; De Lisle, G.W. Influence of sensitisation to environmental mycobacteria on subsequent vaccination against bovine tuberculosis. Vaccine. 2002 20: 1126–1133. Buddle, B.M.; Wedlock, D.N.; Parlane, N.A.; Corner, L.A.; De Lisle, G.W.; Skinner, M.A. Revaccination of neonatal calves with Mycobacterium bovis BCG reduces the level of protection against bovine tuberculosis induced by a single vaccination. Infect Immun. 2003 71: 6411- 6419. 51 Buddle, B.M.; Denis, M.; Aldwell, F.E.; Vordermeier, H.M.; Hewinson, R.G.; Wedlock, D.N. Vaccination of cattle with Mycobacterium bovis BCG by a combination of systemic and oral routes. Tuberculosis. 2008 88: 595– 600. Buddle, B.M.; Aldwell, F.E.; De Lisle, G.W.; Vordermeier, H.M.; Hewinson, R.G.; Wedlock, D.N. Low oral BCG doses fail to protect cattle against an experimental challenge with Mycobacterium bovis. Tuberculosis. 2011 91: 400–405. Cooper, A. Cell mediate immune responses in tuberculosis. Annu. Rev. Immunol. 2009 27: 393–422. De Lisle, G.W.; Wards, B.J.; Buddle, B.M.; Collins, D.M. The efficacy of live tuberculosis vaccines after presensitization with Mycobacterium avium. Tuberculosis. 2005 85: 73–79. Fine, P.E. The BCG story: lessons from the past and implications for the future. Rev. Inf. Dis. 1989 11 (2): 353– 359. Fischer, A.H.; Jacobson, K.A.; Rose, J.; Zeller, R. Hematoxylin and eosin staining of tissue and cell sections. CSH Protocols. 2008 doi: 10.1101/pdb.prot4986. Geissmann, F.; Manz, M.G.; Jung, S.; Sieweke, M.H.; Merad, M.; Ley, K. Development of monocytes, macrophages, and dendritic cells. Science. 2010 327: 656–661. Gicquel, B. Towards new mycobacterial vaccines. Dev. Bio. Stand. 1994 82: 171–178. Hernandez- Pando, R.; Jeyanathan, M.; Mengistu, G.; Aguilar, D.; Orozco, H.; Harboe, M.; Rook, G.A.; Bjune, G. Persistence of DNA from Mycobacterium tuberculosis in superficially normal lung tissue during latent infection. Lancet. 2000 356: 2133–2138. Hope, J.C.; Thom, M.L.; Mc Aulay, M.; Mead, E.; Vordermeier, H.M.; Clifford, D.; Hewinson, R. G.; Villarreal- Ramos, B. Identification of surrogates and correlates of protection in protective immunity against Mycobacterium bovis infection induced in neonatal calves by vaccination with M. bovis BCG Pasteur and M. bovis BCG Danish. Clin Vaccine Immunol. 2011 18: 373–379. Kauffman, S.H.E.; Ottenhoff, T.H.M. Tuberculosis vaccine development: strength lies in tenacity. Trends in Immunol. 2012 33 (7); 373- 379. Ladel, C.H.; Daugelat, S.; Kaufmann, S.H. Immune response to Mycobacterium bovis bacille Calmette Guerin infection in major histocompatibility complex class I- and II-deficient knock-out mice: contribution of CD4 and CD8 T cells to acquired resistance. Eur J Immunol. 1995 25: 377–384 52 Lopez- Valencia, G; Renteria- Evangelista, T.; Williams, J.J.; Licea- Navarro, A.; Mora-Valle, A.L.; Medina- Basuto, G. Field evaluation of the protective efficacy of Mycobacterium bovis BCG vaccine against bovine tuberculosis. Res Vet Sci. 2010 88: 44– 49. Orme I.M.; Roberts, A.R.; Collins, F.M. Lack of evidence for a reduction in the efficacy of subcutaneous BCG vaccination in mice infected with nontuberculous mycobacteria. Tubercle. 1986 167: 41– 46. Orme, I.M.; Miller, E.S.; Roberts, A.D.; Furney, S. K.; Griffin, J.P.; Dobos, K.M.; Chi, D.; Rivoire, B.; Brennan, P.J. T lymphocytes mediating protection and cellular cytolysis during the course of Mycobacterium tuberculosis infection. Evidence for different kinetics and recognition of a wide spectrum of protein antigens. J. Immunol. 1992 148: 189-196. Ottenhoff, T.H.M.; Verreck, F.A.; Lichtenauer- Kaligis, E.G.; Hoeve, M.A.; Sanal, O.; Van Dissel, J.T. Genetics, cytokines and human infectious disease: lessons from weakly pathogenic mycobacteria and salmonellae. Nat Genet. 2002 32: 97–105. Ottenhoff, T.H.M; Lewinsohn, D.A.; Lewinsohn, D.M. Human CD4 and CD8 T cell responses to Mycobacterium tuberculosis: antigen specificity, function, implications and applications, p 119–156. In: Wiley-VCH Verlag GmbH & Co.KGaA (Eds), Handbook of tuberculosis, 2008. Immunology and cell biology, Weinheim. Ottenhoff T.H.M. New pathways of protective and pathological host defense to micobactéria. Trends in Microb. 2012 20 (9): 419- 428 Reyes Perez, A. Modification of the fite-faraco technique for the staining of acid-alcohol fast bacilli in histologic sections. Rev Latinoam Anat Patol. 1963 7: 81- 85. Rizzi, C.; Bianco, M.V.; Bianco, F.C.; Soria, M.; Gravisaco, M.J.; Montenegro, V.; Vagnoni, L.; Garbaccio, S.; Delgado, F.; Leal, K.S.; Cataldi, A.A.; Dellagostin, O.A.; Bigi, F. Vaccination with a BCG strain overexpressing Ag85B protects cattle against Mycobacterium bovis challenge. Plos One. 2012 7 (12): e51396. doi:10.1371/journal.pone.0051396. Schuurhuis, D.H.; Van, M.N.; Ioan- Facsinay, A.; Jiawan, R.; Camps, M.; Nouta, J.; Melief, C.J.; Verbeek, J.S.; Ossendorp, F. Immune complex-loaded dendritic cells are superior to soluble immune complexes as antitumor vaccine. J Immunol. 2006 176: 4573–4580. Silva, B.D.S.; Silva, E.B.; Nascimento, I.P.; Reis, M.C.G.; Kipnis, A.; Junqueira- Kipnis, A.P. MPT- 51/ CpG DNA vaccine protects mice against Mycobacterium tuberculosis. Vaccine. 2009 27: 4402- 4407. 53 Silva, E.B; Silva, B.D.S.; Leon, J.R.R.; Kipnis, A.; Santos, I.K.F.M.; Junqueira- Kipnis, A.P. Using BCG, MPT- 51 and Ag85 as antigens in an indirect ELISA for the diagnosis of bovine tuberculosis. The Vet J. 2011 187: 276- 278. Sousa, E.M.; Costa, A.C.; Trentini, M.M.; Filho, J.A.A.; Kipnis, A.; Junqueira- Kipnis, A. P. Immunogenicity of a fusion protein containing immunodominant epitopes of Ag85C, MPT51, and HspX from Mycobacterium tuberculosisin mice and active TB infection. Plos One. 2012 7 (10) e47781 doi: 10.1371/journal.pone.0047781. Spratt, J.M.; Britton, W.J.; Triccas, J.A. In vivo persistence and protective efficacy of the bacille Calmette Guerin vaccine overexpressing the HspX latency antigen. Bioengineered Bugs. 2010 1 (1): 61-65 Sweeney, K.A.; Dao, D.N; Goldberg, M.F.; Hsu, T.; Venkataswamy, M.M.; Tamayo, M.H.; Ordway, D.; Sellers, R.S.; Jain, P.; Chen, B.; Chen, M.; Kim, J.; Lukose, R.; Chan, J.; Orme, I.M.; Porcelli, S.A.; Jacobs, W.R. A recombinant Mycobacterium smegmatis induces potent bactericidal immunity against Mycobacterium tuberculosis. Nat. Med. 2011 7 (10): 1261-1268. Vordermeier, M.; Gordon, S. V.; Hewinson, R. G. Mycobacterium bovis antigens for the differential diagnosis of vaccinated and infected cattle. Vet Microbiol. 2011 151: 8-13 Waters, W.R.; Palmer, M.V.; Buddle, B.M.; Vordermeier, H.M. Bovine tuberculosis vaccine research: historical perspectives and recent advances. Vaccine. 2012 30 (16): 2611- 2622. Wedlock, D.N.; Denis, M.; Vordermeier, H.M.; Hewinson, R.G.; Buddle, B.M. Vaccination of cattle with Danish and Pasteur strains of Mycobacterium bovis BCG induce different levels of IFNgamma post-vaccination, but induce similar levels of protection against bovine tuberculosis. Vet Immunol Immunopathol. 2007 118: 50– 58. World Health Organization. WHO Report 2009: Global Tuberculosis Control: Surveillance, Planning, Financing. Geneva. World Health Organization; 2009. Zhang, H.; Peng, P.; Miao, S.; Zhao, Y.; Mao, F.; Wang, L.; Bai, Y.; Xu, Z.; Wei, S.; Shi, C. Recombinant Mycobacterium smegmatis expressing an ESAT6-CFP10 fusion protein induces anti- mycobacterial immune responses and protects against Mycobacterium tuberculosis challenge in mice. Scand. J. Immunol. 2010 72: 349-357.

Page generated in 0.0032 seconds