Return to search

Magnetohipertermia em nanopartículas core-shell / Magnetohyperthermia in core-shell nanoparticles

Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2016-09-26T11:37:12Z
No. of bitstreams: 2
Tese - Marcus Carrião dos Santos - 2016.pdf: 18819776 bytes, checksum: c30d69dcb666acd99ab25efc73f7a96e (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-09-26T12:06:45Z (GMT) No. of bitstreams: 2
Tese - Marcus Carrião dos Santos - 2016.pdf: 18819776 bytes, checksum: c30d69dcb666acd99ab25efc73f7a96e (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2016-09-26T12:06:45Z (GMT). No. of bitstreams: 2
Tese - Marcus Carrião dos Santos - 2016.pdf: 18819776 bytes, checksum: c30d69dcb666acd99ab25efc73f7a96e (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2016-05-04 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / The phenomenon of heat dissipation by magnetic materials interacting with an alternating magnetic field,
known as magnetic hyperthermia, is an emergent and promising therapy for many diseases, mainly cancer.
The scientific community has endeavored to identify the properties that lead to maximum efficiency
dissipation of magnetic nanoparticles. However, the diameter in which this efficiency reaches maximum is
sometimes bigger than 10 nm, presenting several incompatibilities with biomedical aplications. On the
other hand, small nanoparticles (< 8 nm}) do not suffer from the same disadvantages. On the contrary, they
benefit from a biodistribution convenient for cancer treatment, affinity for the lymphatic system, further
penetration of tumor tissue and renal clearance. However, the use of small nanostructures as heat centers
never received much attention, in part because the model most used to describe the magnetic hyperthermia
phenomenon, the linear response theory (LRT), provides a very small dissipation in these systems. Recently,
experimental results have questioned this inefficiency and evidences that it is possible to produce a
biological response (including cell death) without necessarily measuring a temperature variation opened up
new possibilities for small nanostructures. This research, therefore, proposes a change in magnetic
nanostructure tailoring strategy for biomedical applications of hyperthermia: to make more efficient
dissipation in small nanoparticles. Therefore, it is necessary to rebuild the theoretical framework of
hyperthermia, making the description of these small systems more accurate. This thesis deals with the
development of modeling tools to enable a distinction between the most superficial and internal region of
the nanoparticle, recognizing that many of the properties at the nanoscale has its origin in surface effects
and the surface-to-volume ratio. A model for the description of core-shell system magnetization was
developed, based on the Heisenberg Hamiltonian and a mean field theory in which different parameters may
be assigned to each region. The combination of this model with the LRT has given rise to a new description
of hyperthermia phenomenon in which the importance of surface effects and can be explicitly considered,
making also possible the description of heterogeneous systems. The model was compared with original
(homogeneous nanoparticles) and literature (heterogeneous nanoparticles) experimental data, with good
qualitative agreement with the results. In an attempt to verify the influence of effects of nonlinearity in these
systems, a non-linear response theory was developed from the generalization of the LRT, and applied to
core-shell systems. The fundamental role of these theoretical tools is to point the direction in which the
nanomaterials tailoring should advance to make viable the proposed hyperthermia with small
nanostructures. The models proposed here suggest that a higher dissipation efficiency in small systems is
obtained with a combination of materials which lead to the reduction ratio of shell-to-core damping factors,
increasing of the exchange constant in the interface and maximizing the shell-to-core anisotropy constants,
indicating that better results should be found in Soft@Hard systems. / O fenômeno de dissipação de calor por materiais magnéticos que interagem com um campo magnético
alternado, conhecido como hipertermia magnética, é uma emergente e promissora terapia para muitas
doenças, principalmente o câncer. A comunidade científica tem se esforçado para identificar as propriedades
que levam à eficiência máxima de dissipação em nanopartículas magnéticas. Entretanto, muitas vezes, o
diâmetro para o qual essa eficiência é máxima supera 10 nm, apresentando diversas incompatibilidades com
as aplicações biomédicas. Por outro lado, nanopartículas pequenas (< 8 nm) não sofrem das mesmas
desvantagens, pelo contrário, se beneficiam de uma biodistribuição conveniente para o tratamento
oncológico, afinidade com o sistema linfático, maior penetração no tecido tumoral e excreção via depuração
renal. Entretanto, o uso de nanoestruturas pequenas como centros de calor nunca recebeu muita atenção, em
parte, porque o modelo mais utilizado para descrever o fenômeno de hipertermia magnética, a teoria de
resposta linear (LRT), prevê uma dissipação muito pequena nesses sistemas. Recentemente, resultados
experimentais colocaram em dúvida essa ineficiência e evidências de que é possível produzir uma resposta
biológica (inclusive morte celular) sem necessariamente elevar a temperatura de forma mensurável abriram
novas possibilidades para as nanoestruturas pequenas. Esse trabalho propõe, então, uma mudança na estratégia de engenharia de nanoestruturas magnéticas para aplicações biomédicas de hipertermia: que se
busque tornar mais eficiente a dissipação em nanopartículas pequenas. Para tanto, é necessário reconstruir o
arcabouço teórico de hipertermia, para tornar a descrição desses sistemas pequenos mais precisa. Esta tese
ocupa-se do desenvolvimento de ferramentas de modelagem que permitam uma diferenciação entre a região
mais superficial e interna da nanopartícula, reconhecendo que grande parte das propriedades em escala
nanométrica tem sua origem nos efeitos de superfície e na relação superfície-volume. Um modelo de
descrição da magnetização de sistemas core-shell foi desenvolvido, com base na hamiltoniana de
Heisenberg e em uma teoria de campo médio, no qual podem ser atribuídos diferentes parâmetros para cada
uma dessas regiões. A combinação desse modelo com a LRT deu origem a uma nova descrição do fenômeno
de hipertermia no qual a importância de efeitos de superfície podem ser explicitamente considerados,
tornando possível também a descrição de sistemas heterogêneos. O modelo foi comparado com dados
experimentais originais (nanopartículas homogêneas) e da literatura (nanopartículas heterogêneas),
apresentando boa concordância qualitativa com os resultados. Na tentativa de verificar a influência de
efeitos de não-linearidade nesses sistemas, desenvolveu-se uma teoria de resposta não-linear a partir da
generalização da LRT, aplicando-a a sistemas core-shell. O papel fundamental dessas ferramentas teóricas é
apontar a direção para qual a engenharia de nanomateriais deve avançar para tornar a proposta de
hipertermia com nanoestruturas pequenas viável. Os modelos propostos aqui sugerem que a maior
eficiência de dissipação em sistemas pequenos será obtida com a combinação de materiais que levem à
redução da razão entre os fatores de damping da shell com relação ao core, o aumento da constante de
exchange na interface e a maximização da razão entre as constantes de anisotropia da shell com relação ao
core, indicando melhores resultados para sistemas Soft@Hard.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.bc.ufg.br:tede/6272
Date04 May 2016
CreatorsSantos, Marcus Carrião dos
ContributorsBakuzis, Andris Figueiroa, Bakuzis, Andris Figueiroa, Knobel, Marcelo, Jadim, Renato de F., Silva, Hermann F. F. Lima e, Pelegrini, Fernando
PublisherUniversidade Federal de Goiás, Programa de Pós-graduação em Fisica (IF), UFG, Brasil, Instituto de Física - IF (RG)
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFG, instname:Universidade Federal de Goiás, instacron:UFG
Rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/, info:eu-repo/semantics/openAccess
Relation3162138865744262028, 600, 600, 600, 600, -4029658853652049306, 4652787352762697830, -2555911436985713659

Page generated in 0.0034 seconds