• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 9
  • 4
  • 3
  • Tagged with
  • 33
  • 33
  • 22
  • 11
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Incorporating Magnetic Nanoparticle Aggregation Effects into Heat Generation and Temperature Profiles for Magnetic Hyperthermia Cancer Treatments

Holladay, Robert Tyler 27 January 2016 (has links)
In treating cancer, a primary consideration is the target specificity of the treatment. This is a measure of the treatment dose that the cancerous (target) tissue receives compared to the dose that healthy tissue receives. Nanoparticle (NP) based treatments offer many advantages for target specificity compared to other forms of treatment due to their ability to selectively target tumors. One benefit of using magnetic NPs is their ability to release heat, which can both sensitize tumors to other forms of treatment as well as damage the tumor. The work here aims to incorporate a broad range of relevant physics into a comprehensive model. NP aggregation is known to be a large source of uncertainty in these treatments, thus a framework has been developed that can incorporate the effects of aggregation on NP diffusion, NP heat release, temperature rise, and overall thermal damage. To quanitify thermal damage in both healthy tissue and tumor tissue, the Cumulative Equivalent Minutes at 43 textcelsius~model is used. The Pennes bioheat equation is used as the governing equation for the temperature rise and included in it is a source heating term due to the NPs. NP diffusion and aggregation are simulated via a random walk process, with a probability of aggregation determining if nearest neighbor particles aggregate at each time step. Additionally, models are developed that attempt to incorporate aggregation effects into NP heat dissipation, though each proves to only be accurate when there is little aggregation occurring. In this work, verification analyses are done for each of the above areas and, at minimum, qualitatively accurate results have been achieved. Verification results of this work show that aggregation can be neglected at concentrations on the order of $100~nM$ or less. This however only serves as a rough estimation and further work is needed to gain a better quantitative understanding of the effects of NP concentration on aggregation. Using this concentration as a limitation, results are presented for a variety of tumor sizes and concentration distributions. Because this work incorporates a variety of physics and numerical methods into a single encompassing model, depth and physical accuracy in each area (bio-heat transfer, diffusion via random walk, NP energy dissipation, and aggregation) have been somewhat limited. This does however provide a framework in which each of the above areas can be further developed and their effects examined in the overall course of treatment. / Master of Science
2

Carbon nanotubes filled with continuous ferromagnetic α-Fe nanowires and surface-functionalized with paramagnetic Gd(III) : a candidate magnetic hyperthermia structure and MRI contrast agent

Peci, Taze January 2017 (has links)
The main goal of this project was the development of carbon nanotubes as a candidate for dual-functioning magnetic hyperthermia structure and magnetic resonance imaging contrast agent. This was achieved by filling carbon nanotubes with continuous ferromagnetic α-Fe nanowires and surface functionalized with paramagnetic Gd(III). Also, length control of both nanotube and nanowire was investigated. Firstly, a low vapour flow-rate and constant evaporation temperature chemical vapour deposition method based on the thermal decomposition of ferrocene was employed which achieved continuous α-Fe nanowires on the same scale as the nanotube for lengths >10 m without the necessity of post-synthesis heat-treatment or introduction of other precursor elements. The low vapour flow-rate regime has the advantage of sustaining the intrinsic temperature gradient at the tip of the forming structure which drives the vapour feedstock to the growth front to guarantee continuous nanowire formation. For initially mixed-phase nanowires of length less than 10 μm, the continuous α-Fe nanowires were achieved by postsynthesis heat treatment. Secondly, a simple wet chemical method involving only sonication in aqueous GdCl3 solution was used for surface functionalization of iron-filled multiwalled carbon nanotubes with gadolinium. Functional groups on the sidewalls produced by the sonication provide active nucleation sites for the loading of Gd3+ ions. Characterization by electron paramagnetic resonance, electron energy loss spectroscopy, and high-resolution transmission electron microscopy confirmed the presence of Gd3+ ions on the sidewall surface. The ferromagnetic properties of the encapsulated iron nanowire maintained after surface functionalization. At room temperature a saturation magnetization of 40 emu/g and a coercivity of 600 Oe were observed. Heating functionality in an alternating applied magnetic field was quantified through the measurement of specific absorption rate: 50 W/gFe and the intrinsic loss power: 1.12 nHm²kg⁻¹ at magnetic field strength 8 kA/m and frequency of 696 kHz. These structures exhibited an extremely high relaxivity r₁ ~ 200 mM⁻¹ s⁻¹ at high magnetic field (9.4 T).
3

Magnetohipertermia em nanopartículas core-shell / Magnetohyperthermia in core-shell nanoparticles

Santos, Marcus Carrião dos 04 May 2016 (has links)
Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2016-09-26T11:37:12Z No. of bitstreams: 2 Tese - Marcus Carrião dos Santos - 2016.pdf: 18819776 bytes, checksum: c30d69dcb666acd99ab25efc73f7a96e (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-09-26T12:06:45Z (GMT) No. of bitstreams: 2 Tese - Marcus Carrião dos Santos - 2016.pdf: 18819776 bytes, checksum: c30d69dcb666acd99ab25efc73f7a96e (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2016-09-26T12:06:45Z (GMT). No. of bitstreams: 2 Tese - Marcus Carrião dos Santos - 2016.pdf: 18819776 bytes, checksum: c30d69dcb666acd99ab25efc73f7a96e (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-05-04 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / The phenomenon of heat dissipation by magnetic materials interacting with an alternating magnetic field, known as magnetic hyperthermia, is an emergent and promising therapy for many diseases, mainly cancer. The scientific community has endeavored to identify the properties that lead to maximum efficiency dissipation of magnetic nanoparticles. However, the diameter in which this efficiency reaches maximum is sometimes bigger than 10 nm, presenting several incompatibilities with biomedical aplications. On the other hand, small nanoparticles (< 8 nm}) do not suffer from the same disadvantages. On the contrary, they benefit from a biodistribution convenient for cancer treatment, affinity for the lymphatic system, further penetration of tumor tissue and renal clearance. However, the use of small nanostructures as heat centers never received much attention, in part because the model most used to describe the magnetic hyperthermia phenomenon, the linear response theory (LRT), provides a very small dissipation in these systems. Recently, experimental results have questioned this inefficiency and evidences that it is possible to produce a biological response (including cell death) without necessarily measuring a temperature variation opened up new possibilities for small nanostructures. This research, therefore, proposes a change in magnetic nanostructure tailoring strategy for biomedical applications of hyperthermia: to make more efficient dissipation in small nanoparticles. Therefore, it is necessary to rebuild the theoretical framework of hyperthermia, making the description of these small systems more accurate. This thesis deals with the development of modeling tools to enable a distinction between the most superficial and internal region of the nanoparticle, recognizing that many of the properties at the nanoscale has its origin in surface effects and the surface-to-volume ratio. A model for the description of core-shell system magnetization was developed, based on the Heisenberg Hamiltonian and a mean field theory in which different parameters may be assigned to each region. The combination of this model with the LRT has given rise to a new description of hyperthermia phenomenon in which the importance of surface effects and can be explicitly considered, making also possible the description of heterogeneous systems. The model was compared with original (homogeneous nanoparticles) and literature (heterogeneous nanoparticles) experimental data, with good qualitative agreement with the results. In an attempt to verify the influence of effects of nonlinearity in these systems, a non-linear response theory was developed from the generalization of the LRT, and applied to core-shell systems. The fundamental role of these theoretical tools is to point the direction in which the nanomaterials tailoring should advance to make viable the proposed hyperthermia with small nanostructures. The models proposed here suggest that a higher dissipation efficiency in small systems is obtained with a combination of materials which lead to the reduction ratio of shell-to-core damping factors, increasing of the exchange constant in the interface and maximizing the shell-to-core anisotropy constants, indicating that better results should be found in Soft@Hard systems. / O fenômeno de dissipação de calor por materiais magnéticos que interagem com um campo magnético alternado, conhecido como hipertermia magnética, é uma emergente e promissora terapia para muitas doenças, principalmente o câncer. A comunidade científica tem se esforçado para identificar as propriedades que levam à eficiência máxima de dissipação em nanopartículas magnéticas. Entretanto, muitas vezes, o diâmetro para o qual essa eficiência é máxima supera 10 nm, apresentando diversas incompatibilidades com as aplicações biomédicas. Por outro lado, nanopartículas pequenas (< 8 nm) não sofrem das mesmas desvantagens, pelo contrário, se beneficiam de uma biodistribuição conveniente para o tratamento oncológico, afinidade com o sistema linfático, maior penetração no tecido tumoral e excreção via depuração renal. Entretanto, o uso de nanoestruturas pequenas como centros de calor nunca recebeu muita atenção, em parte, porque o modelo mais utilizado para descrever o fenômeno de hipertermia magnética, a teoria de resposta linear (LRT), prevê uma dissipação muito pequena nesses sistemas. Recentemente, resultados experimentais colocaram em dúvida essa ineficiência e evidências de que é possível produzir uma resposta biológica (inclusive morte celular) sem necessariamente elevar a temperatura de forma mensurável abriram novas possibilidades para as nanoestruturas pequenas. Esse trabalho propõe, então, uma mudança na estratégia de engenharia de nanoestruturas magnéticas para aplicações biomédicas de hipertermia: que se busque tornar mais eficiente a dissipação em nanopartículas pequenas. Para tanto, é necessário reconstruir o arcabouço teórico de hipertermia, para tornar a descrição desses sistemas pequenos mais precisa. Esta tese ocupa-se do desenvolvimento de ferramentas de modelagem que permitam uma diferenciação entre a região mais superficial e interna da nanopartícula, reconhecendo que grande parte das propriedades em escala nanométrica tem sua origem nos efeitos de superfície e na relação superfície-volume. Um modelo de descrição da magnetização de sistemas core-shell foi desenvolvido, com base na hamiltoniana de Heisenberg e em uma teoria de campo médio, no qual podem ser atribuídos diferentes parâmetros para cada uma dessas regiões. A combinação desse modelo com a LRT deu origem a uma nova descrição do fenômeno de hipertermia no qual a importância de efeitos de superfície podem ser explicitamente considerados, tornando possível também a descrição de sistemas heterogêneos. O modelo foi comparado com dados experimentais originais (nanopartículas homogêneas) e da literatura (nanopartículas heterogêneas), apresentando boa concordância qualitativa com os resultados. Na tentativa de verificar a influência de efeitos de não-linearidade nesses sistemas, desenvolveu-se uma teoria de resposta não-linear a partir da generalização da LRT, aplicando-a a sistemas core-shell. O papel fundamental dessas ferramentas teóricas é apontar a direção para qual a engenharia de nanomateriais deve avançar para tornar a proposta de hipertermia com nanoestruturas pequenas viável. Os modelos propostos aqui sugerem que a maior eficiência de dissipação em sistemas pequenos será obtida com a combinação de materiais que levem à redução da razão entre os fatores de damping da shell com relação ao core, o aumento da constante de exchange na interface e a maximização da razão entre as constantes de anisotropia da shell com relação ao core, indicando melhores resultados para sistemas Soft@Hard.
4

Novel Magnetic Nanostructures for Enhanced Magnetic Hyperthermia Cancer Therapy

Nemati Porshokouh, Zohreh 15 November 2016 (has links)
In this dissertation, I present the results of a systematic study on novel multifunctional nanostructure systems for magnetic hyperthermia applications. All the samples have been synthesized, structurally/magnetically characterized, and tested for magnetic hyperthermia treatment at the Functional Materials Laboratory of the University South Florida. This work includes studies on four different systems: (i) Core/shell Fe/γ-Fe2O3 nanoparticles; (ii) Spherical and cubic exchange coupled FeO/Fe3O4 nanoparticles; (iii) Fe3O4 nano-octopods with different sizes; (iv) High aspect ratio FeCo nanowires and Fe3O4 nanorods. In particular, we demonstrated the enhancement of the heating efficiency of these nanostructures by creating monodisperse and highly crystalline nanoparticles, and tuning their magnetic properties, mainly their saturation magnetization (MS) and effective anisotropy, in controlled ways. In addition, we studied the influence of other parameters, such as the size and concentration of the nanoparticles, the magnitude of the applied AC magnetic field, or different media (agar vs. water), on the final heating efficiency of these nanoparticles. For the core/shell Fe/γ-Fe2O3 nanoparticles, a modest heating efficiency has been obtained, resulting mainly from the strong reduction in MS caused by the shrinkage of the core with time. However, for sizes above 14 nm, the shrinkage process is much slower and the obtained heating efficiency is better than the one exhibited by conventional solid nanoparticles of the same size. In the case of the exchange-coupled FeO/Fe3O4 nanoparticles, we successfully created two sets of comparable particles: spheres with 1.5 times larger MS than the cubes, and cubes with 1.5 times larger effective anisotropy than the spheres, while keeping the other parameters the same. Our results show that increasing the effective anisotropy of the nanoparticles gives rise to a greater heating efficiency than increasing their MS. The Fe3O4 nano-octopods, with enhanced surface anisotropy, present better heating efficiency than their spherical and cubic nanoparticles, especially in the high field region, and we have shown that by tuning their size and the effective anisotropy, we can optimize their heating response to the applied AC magnetic field. For magnetic fields, smaller than 300−400 Oe we found that the smallest nano-octopods give the best heating efficiency. Yet if we increase the AC field value, the bigger octopods show an increased heating efficiency and become more effective. Finally, the FeCo nanowires and Fe3O4 nanorods exhibit enhanced heating efficiency with increasing aspect ratio when aligned in the direction of the applied AC magnetic field, due to the combined effect of shape anisotropy and dipolar interactions. Of all the studied systems, these 1D high aspect ratio nanostructures have displayed the highest heating rates. All of these findings point toward an important fact that tuning the structural and magnetic parameters in general, and the effective anisotropy in particular, of the nanoparticles is a very promising approach for improving the heating efficiency of magnetic nanostructures for enhanced hyperthermia.
5

Development of Multifunctional Nanoparticles for Cancer Therapy Applications

Huth, Christopher January 2012 (has links)
No description available.
6

Cell mediated therapeutics for cancer treatment: tumor homing cells as therapeutic delivery vehicles

Balivada, Sivasai January 1900 (has links)
Doctor of Philosophy / Department of Anatomy and Physiology / Deryl L. Troyer / Many cell types were known to have migratory properties towards tumors and different research groups have shown reliable results regarding cells as delivery vehicles of therapeutics for targeted cancer treatment. Present report discusses proof of concept for 1. Cell mediated delivery of Magnetic nanoparticles (MNPs) and targeted Magnetic hyperthermia (MHT) as a cancer treatment by using in vivo mouse cancer models, 2. Cells surface engineering with chimeric proteins for targeted cancer treatment by using in vitro models. 1. Tumor homing cells can carry MNPs specifically to the tumor site and tumor burden will decrease after alternating magnetic field (AMF) exposure. To test this hypothesis, first we loaded Fe/Fe3O4 bi-magnetic NPs into neural progenitor cells (NPCs), which were previously shown to migrate towards melanoma tumors. We observed that NPCs loaded with MNPs travel to subcutaneous melanoma tumors. After alternating magnetic field (AMF) exposure, the targeted delivery of MNPs by the NPCs resulted in a mild decrease in tumor size (Chapter-2). Monocytes/macrophages (Mo/Ma) are known to infiltrate tumor sites, and also have phagocytic activity which can increase their uptake of MNPs. To test Mo/Ma-mediated MHT we transplanted Mo/Ma loaded with MNPs into a mouse model of pancreatic peritoneal carcinomatosis. We observed that MNP-loaded Mo/Ma infiltrated pancreatic tumors and, after AMF treatment, significantly prolonged the lives of mice bearing disseminated intraperitoneal pancreatic tumors (Chapter-3). 2. Targeted cancer treatment could be achieved by engineering tumor homing cell surfaces with tumor proteases cleavable, cancer cell specific recombinant therapeutic proteins. To test this, Urokinase and Calpain (tumor specific proteases) cleavable; prostate cancer cell (CaP) specific (CaP1 targeting peptide); apoptosis inducible (Caspase3 V266ED3)- rCasp3V266ED3 chimeric protein was designed in silico. Hypothesized membrane anchored chimeric protein (rCasp3V266ED3, rMcherry red) plasmids were constructed. Membrane anchoring and activity of designed proteins were analyzed in RAW264.7 Mo/Ma and HEK293 cells in vitro. Further, Urokinase (uPA) mediated cleavage and release of rCasp3V266ED3 from engineered cells was tested (Chapter-4). Animal models for cancer therapy are invaluable for preclinical testing of potential cancer treatments. Final chapter of present report shows evidence for immune-deficient line of pigs as a model for human cancers (Chapter-5)
7

A/C magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles : a mouse study / AC magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles

Balivada, Sivasai January 1900 (has links)
Master of Science / Department of Anatomy and Physiology / Deryl L. Troyer / There is renewed interest in magnetic hyperthermia as a treatment modality for cancer, especially when it is combined with other more traditional therapeutic approaches, such as the co-delivery of anticancer drugs or photodynamic therapy. The influence of bimagnetic nanoparticles (MNPs) combined with short external alternating magnetic field (AMF) exposure on the growth of subcutaneous mouse melanomas (B16-F10) was evaluated. Bimagnetic Fe/Fe3O4 core/shell nanoparticles were designed for cancer targeting after intratumoral or intravenous administration. Their inorganic center was protected against rapid biocorrosion by organic dopamine-oligoethylene glycol ligands. TCPP (4-tetracarboxyphenyl porphyrin) units were attached to the dopamine-oligoethylene glycol ligands. The magnetic hyperthermia results obtained after intratumoral injection indicated that micromolar concentrations of iron given within the modified core-shell Fe/Fe3O4 nanoparticles caused a significant anti-tumor effect on murine B16-F10 melanoma with three short 10-minute AMF exposures. There is a decrease in tumor size after intravenous administration of the MNPs followed by three consecutive days of AMF exposure. These results indicate that intratumoral administration of surface-modified MNPs can attenuate mouse melanoma after AMF exposure. Moreover, intravenous administration of these MNPs followed by AMF exposure attenuates melanomas, indicating that adequate amounts of TCPP-labeled stealth Fe/Fe3O4 nanoparticles can accumulate in murine melanoma after systemic delivery to allow effective magnetic hyperthermic therapy in a rodent tumor mode.
8

Simulações estocásticas de nanopartículas magnéticas / Stochastic simulations of magnetic nanoparticles

Landi, Gabriel Teixeira 08 March 2012 (has links)
O tema deste trabalho é a modelização computacional das propriedades magnéticas de sistemas nanoparticulados a temperatura finita. Estes materiais, que são de grande interesse acadêmico e aplicado, possuem uma sensibilidade atípica às flutuações térmicas, um fenômeno conhecido como superparamagnetismo. Por essa e outras peculiaridades, eles apresentam um comportamento extremamente rico e complexo que se estende por uma gama ampla de situações experimentais, indo desde eras geológicas em aplicações na área de geomagnetismo, a fenômenos ultra-rápidos em dispositivos eletrônicos e tratamentos clínicos. O modelo empregado, conhecido como teoria de Néel-Brown, introduz na equação dinâmica magnética um termo estocástico para lidar com as flutuações térmicas. Sua validade é bastante geral, podendo ser aplicado para simular uma quantidade enorme de experimentos. Implementamos uma biblioteca numérica extremamente eficiente, que permite tratar sobre um mesmo escopo estas diferentes situações. Neste trabalho, focamos no problema de histerese dinâmica que vêm recebendo considerável atenção nos últimos anos motivado, principalmente, pela aplicação de nanopartículas magnéticas em tratamentos de tumores por uma técnica conhecida como magneto-hipertermia. / This thesis concerns the use of computer models to study the magnetic properties of nanoparticles at a finite temperature. These materials, which are of great academic and applied interest, are known to have an enhanced sensitivity to thermal fluctuations -- a phenomenon known as superparamagnetism. Such a peculiar nature is responsible for a large number of interesting physical phenomena, which are known to extend over a wide range of experimental situations. These include, among others, geomagnetism, ultra-fast devices and oncological treatments. The model employed, known as the Néel-Brown theory, introduces in the dynamical equation an stochastic term representing the thermal fluctuations. It\'s range of validity is quite broad, thus being applicable to all of the aforementioned situations. We implemented a highly efficient numerical library, whose scope extends over a large range of experiments. In this thesis we focused on the problem of dynamic hysteresis, which has receive considerable attention in recent years. This was motivated, among other things, by the potential use of nanoparticles in magneto-hyperthermia treatments.
9

Development of Polymer Composite Based Enabling Technologies for Lab-on-a-Chip Devices

Carias, Vinicio 20 July 2015 (has links)
This dissertation presents enabling technologies to fabricate thermo-responsive polymer composite based Lab-on-a-Chip (LOC) devices. LOC devices, also known as micro-total-analytical systems (microTAS) or microfluidic devices can amalgamate miniaturized laboratory functions on a single chip. This significant size reduction decreases the amount of required fluid volumes down to nano or pico-liters. The main commercial application of LOC devices is the biomedical fields. However, these devices are anticipated to make a technological revolution similar to the way miniaturization changed computers. In fact, medical and chemical analyses are predicted to shift from room-sized laboratories to hand-held portable devices. This dissertation is divided into three technologies. First, a series of terpolymer systems were synthesized and characterized to fabricate crosslinked coatings for phototunable swelling and create chemically patterned regions in order to conjugate cationic markers, proteins, or nanoparticles to the terpolymer coating. Second, antifouling surfaces were fabricated using magnetic thermo-responsive hydrogel structures via soft lithography. The structures were remote control activated with the use of AC magnetic fields. Finally, in order for LOC devices to fulfill its promise of bringing a laboratory to a hand-held device, they will have to be integrated with CMOS technology. Packaging will play a crucial role in this process. The last section will focus on the importance of coefficient of thermal expansion (CTE) mismatch in multi-chip modules. For the first technology, multi-functionalized terpolymer systems have been developed comprising of three units: N-isopropylacrylamide (NIPAAm), a stimuli responsive monomer that swells and collapses in response to temperature; methacryloxybenzophenone (MaBP), a photo-crosslinkable monomer that is activated at λ = 365 nm; and phenacyl methacrylate (PHEm), a photolabile protected functional group that generates localized free carboxyl groups in response to deprotection at λ = 254 nm. The multifunctional terpolymers can be spin-casted to form thin films of well-defined thickness, photo-crosslinked by a long UV wavelength light (λ = 365 nm) to form distinct structural patterns, and subsequently photo-chemically modified by a short UV wavelength light (λ = 254 nm). The photocleavage reaction by UV irradiation allows the production of free carboxylic groups that can be used to conjugate cationic markers, proteins, or nanoparticles to the terpolymer coating. Furthermore, the free carboxyl groups can be used to locally tune the swelling characteristics and transition temperature of the coatings. For the second technology, when Fe3O4 magnetic nanoparticles are integrated into PNIPAAm based composite systems, their resultant hyperthermia behavior becomes an ideal mechanism for remote controlled actuation. In this work, nano Fe3O4 octopods were seeded in fabricated PNIPAAm hydrogel micro-actuators. When the magnetic hydrogel structures were exposed to a magnetic field strength of 63 kA/m at a frequency of 300 kHz, the hydrogel micro-beams underwent a buckling effect when the field was absent and an unbuckling effect when the field was present. The hydrogel micro-beams were fabricated at an approximate distance from one another developing micromanipulating surfaces that were remote control activated. The response time, heating efficiency, and magnetic behavior were thoroughly studied. Lastly, micron sized polystyrene beads were exposed to the antifouling surfaces and movement of the beads was observed as the magnetic hydrogel micro-beams underwent their physical changes. For the third technology, a major reason of device failure in multi-chip module assemblies is a CTE mismatch between the underfill encapsulant material and the integrated circuit chip. Some of the failure mechanisms of microelectronic packaging due to CTE mismatch include fractures, delamination, or cracks through the device. In this section, the CTE of a commercially available underfill material is greatly reduced by loading the polymer resin material with hollow glass beads, to realize an overall effective CTE of 6.6 ppm/°C. Furthermore, the newly developed composite material exhibited outstanding thermomechanical stability at high temperatures beyond 150°C by holding a 3X lower CTE and a higher glass transition temperature.
10

Development and utility of magnetic nanoparticles production by mammalian cells

Lungaro, Lisa January 2018 (has links)
Magnetic hyperthermia (MH) is an anti-cancer treatment which exploits the heat produced by tumour-targeted magnetic nanoparticles (MNPs) subjected to an alternating magnetic field (AMF). A problem limiting the clinical use of MH, however, is the inability to adequately localise the MNPs at the tumour site. A cellular approach using mesenchymal stem cells (MSCs) as carriers has been proposed as these cells are believed to home to sites of tissue injury and tumour growth, however problems with MNPs uptake and toxicity retard progress and need to be overcome. The aim of this project was to find an alternative approach in MH treatment, creating engineered human MSCs able to biosynthesise MNPs. To achieve this goal, MSCs were transfected with either, or both, M. magneticum AMB-1 mms6 and mmsF genes. M. magneticum AMB-1 is a genus of magnetotactic bacteria, containing magnetosomes, which are lipidic organelles containing single crystals of magnetite. M. magneticum-AMB1 mms6 and mmsF genes are important for final crystal morphology and are known to play a role in crystal synthesis and growth respectively. The originality of this study was in using mms6 and mmsF genes, which were codon-optimized for mammalian expression, alone or in combination, for transfection of human MSCs, which have known tumour homing capacity. The transfected MNPs-bearing MSCs, able to migrate into the tumour tissue, were subjected to AMF in MH experiments in an attempt to induce cancer cell death. mms6 and mmsF gene expression, following transfection, was investigated in the human osteosarcoma cell line MG63 by reverse transcription polymerase chain reaction (RT-PCR). The cellular ultrastructure of transfected MG63 cells was investigated by transmission electron microscopy (TEM), revealing the presence of nanoparticles. The magnetism of transfected MG63 cells was proved by superconducting quantum interference device (SQUID) and supported by in vitro MH experiments. Then, human MSCs were transfected with mms6 and mmsF genes, alone or in combination. The effect of transfection experiments and MNPs synthesis on MSCs markers of stemness, cell proliferation and differentiation ability were investigated. The MTB genes expression in human MSCs was assessed by RT-PCR and cell magnetism was confirmed by SQUID, in vitro MH experiments and by magnetic force microscopy (MFM). Then, in vitro studies of MH were undertaken to establish whether mms6 transfected MSCs expressing MNPs supported a MH effect when exposed to an AMF. Cells were initially exposed to an AMF of 565.3 kHz frequency in monolayers and in 3D arrangements and cell death/viability was assessed. Subsequently, the effect of the same AMF on 3D models of mixed populations of mms6-expressing MSCs and cancer cells was assessed. The results indicate that viability of MNPs-expressing MSCs and adjacent cancer cells is reduced following AMF exposure. In vivo studies of MH were undertaken following intracardiac injection of mms6-expressing MSCs in tumour-bearing mice (epidermoid carcinoma). The expression of mms6-expressing MSCs inside mice organs was confirmed by RT-PCR, fluorescence microscopy and immunohistochemistry. The effect of the application of an AMF of 565.3 kHz on mice tumours was studied with different techniques (tumour size and volume measurement, multiphoton microscopy, haematoxylin and eosin staining, and activated Caspase 3 expression), to understand if MNPs created inside mms6- expressing MSCs, following AMF exposure, could lead to cancer cell death. Results indicate that mice tolerate the treatment well, however no appreciable tumour reduction or necrosis was evident. Overall the results suggest that mms6 transfection alone confers the highest magnetisation to MSCs compared to mmsF alone or mms6+mmsF co-transfected, and that mms6 expression in human MSCs does not have an adverse effect on important cell functions. mms6-expressing MSCs, when exposed to an AMF, show reduced viability and enhanced cell cytotoxicity in vitro. When co-cultured with cancer cells in 3D models in vitro, mms6-expressing MSCs are able to reduce viability of adjacent cancer cells confirming the potential applicability of mms6- expressing MSCs for MH treatment. In vivo proof of concept experiments show that mms6-expressing MSCs can locate to the tumour tissue, and mms6-expressing intracardiac injected MSCs mice exposed to AMF tolerate the treatment well. However, the number of mms6-expressing MSCs able to localize to the tumour tissue in this experiment was too low to give an appreciable tumour reduction, so more experiments are needed to enhance the experimental protocol. A number of improvements are required to progress this novel technique towards clinical application. Gene transfection and MNPs production need to be optimised, the best frequency for MH needs to be established and MSCs delivery to the tumour has to be significantly increased to allow concentration of MNPs. The study has helped to increase our knowledge on the creation of magnetic human MSCs to potentially use these cells in MH cancer treatment.

Page generated in 0.0958 seconds