Return to search

Development and utility of magnetic nanoparticles production by mammalian cells

Magnetic hyperthermia (MH) is an anti-cancer treatment which exploits the heat produced by tumour-targeted magnetic nanoparticles (MNPs) subjected to an alternating magnetic field (AMF). A problem limiting the clinical use of MH, however, is the inability to adequately localise the MNPs at the tumour site. A cellular approach using mesenchymal stem cells (MSCs) as carriers has been proposed as these cells are believed to home to sites of tissue injury and tumour growth, however problems with MNPs uptake and toxicity retard progress and need to be overcome. The aim of this project was to find an alternative approach in MH treatment, creating engineered human MSCs able to biosynthesise MNPs. To achieve this goal, MSCs were transfected with either, or both, M. magneticum AMB-1 mms6 and mmsF genes. M. magneticum AMB-1 is a genus of magnetotactic bacteria, containing magnetosomes, which are lipidic organelles containing single crystals of magnetite. M. magneticum-AMB1 mms6 and mmsF genes are important for final crystal morphology and are known to play a role in crystal synthesis and growth respectively. The originality of this study was in using mms6 and mmsF genes, which were codon-optimized for mammalian expression, alone or in combination, for transfection of human MSCs, which have known tumour homing capacity. The transfected MNPs-bearing MSCs, able to migrate into the tumour tissue, were subjected to AMF in MH experiments in an attempt to induce cancer cell death. mms6 and mmsF gene expression, following transfection, was investigated in the human osteosarcoma cell line MG63 by reverse transcription polymerase chain reaction (RT-PCR). The cellular ultrastructure of transfected MG63 cells was investigated by transmission electron microscopy (TEM), revealing the presence of nanoparticles. The magnetism of transfected MG63 cells was proved by superconducting quantum interference device (SQUID) and supported by in vitro MH experiments. Then, human MSCs were transfected with mms6 and mmsF genes, alone or in combination. The effect of transfection experiments and MNPs synthesis on MSCs markers of stemness, cell proliferation and differentiation ability were investigated. The MTB genes expression in human MSCs was assessed by RT-PCR and cell magnetism was confirmed by SQUID, in vitro MH experiments and by magnetic force microscopy (MFM). Then, in vitro studies of MH were undertaken to establish whether mms6 transfected MSCs expressing MNPs supported a MH effect when exposed to an AMF. Cells were initially exposed to an AMF of 565.3 kHz frequency in monolayers and in 3D arrangements and cell death/viability was assessed. Subsequently, the effect of the same AMF on 3D models of mixed populations of mms6-expressing MSCs and cancer cells was assessed. The results indicate that viability of MNPs-expressing MSCs and adjacent cancer cells is reduced following AMF exposure. In vivo studies of MH were undertaken following intracardiac injection of mms6-expressing MSCs in tumour-bearing mice (epidermoid carcinoma). The expression of mms6-expressing MSCs inside mice organs was confirmed by RT-PCR, fluorescence microscopy and immunohistochemistry. The effect of the application of an AMF of 565.3 kHz on mice tumours was studied with different techniques (tumour size and volume measurement, multiphoton microscopy, haematoxylin and eosin staining, and activated Caspase 3 expression), to understand if MNPs created inside mms6- expressing MSCs, following AMF exposure, could lead to cancer cell death. Results indicate that mice tolerate the treatment well, however no appreciable tumour reduction or necrosis was evident. Overall the results suggest that mms6 transfection alone confers the highest magnetisation to MSCs compared to mmsF alone or mms6+mmsF co-transfected, and that mms6 expression in human MSCs does not have an adverse effect on important cell functions. mms6-expressing MSCs, when exposed to an AMF, show reduced viability and enhanced cell cytotoxicity in vitro. When co-cultured with cancer cells in 3D models in vitro, mms6-expressing MSCs are able to reduce viability of adjacent cancer cells confirming the potential applicability of mms6- expressing MSCs for MH treatment. In vivo proof of concept experiments show that mms6-expressing MSCs can locate to the tumour tissue, and mms6-expressing intracardiac injected MSCs mice exposed to AMF tolerate the treatment well. However, the number of mms6-expressing MSCs able to localize to the tumour tissue in this experiment was too low to give an appreciable tumour reduction, so more experiments are needed to enhance the experimental protocol. A number of improvements are required to progress this novel technique towards clinical application. Gene transfection and MNPs production need to be optimised, the best frequency for MH needs to be established and MSCs delivery to the tumour has to be significantly increased to allow concentration of MNPs. The study has helped to increase our knowledge on the creation of magnetic human MSCs to potentially use these cells in MH cancer treatment.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:743779
Date January 2018
CreatorsLungaro, Lisa
ContributorsElfick, Alistair ; Salter, Donald
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/31074

Page generated in 0.0023 seconds