Return to search

Estabilidade t?rmica de pol?meros hidrossol?veis

Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2017-02-02T11:57:41Z
No. of bitstreams: 1
StephanieCavalcanteDeMorais_DISSERT.pdf: 2749086 bytes, checksum: d3dadb51bdb3abfd01a69d46c505025d (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2017-02-06T20:51:56Z (GMT) No. of bitstreams: 1
StephanieCavalcanteDeMorais_DISSERT.pdf: 2749086 bytes, checksum: d3dadb51bdb3abfd01a69d46c505025d (MD5) / Made available in DSpace on 2017-02-06T20:51:56Z (GMT). No. of bitstreams: 1
StephanieCavalcanteDeMorais_DISSERT.pdf: 2749086 bytes, checksum: d3dadb51bdb3abfd01a69d46c505025d (MD5)
Previous issue date: 2016-07-21 / O estudo da degrada??o t?rmica de pol?meros ? essencial para se determinar a estabilidade da sua estrutura e depende do estado f?sico em que o pol?mero se encontra. Um estudo comparativo da estabilidade t?rmica da kappa carragenana (KC), poliacrilamida parcialmente hidrolisada (HPAM) e carboximetilcelulose (CMC) foi realizado na tentativa de se estabelecer uma correla??o entre as estruturas qu?micas, estabilidade desses pol?meros e suas energias de ativa??o no estado s?lido e em solu??o. A estabilidade t?rmica dos pol?meros no estado s?lido foi avaliada por termogravimetria/termogravimetria derivada e a energia de ativa??o foi calculada utilizando o m?todo integral de Broido. J? para os tr?s pol?meros em solu??o, foram realizadas medidas de viscosidade em fun??o do tempo nas temperaturas de 40, 60, 80 e 100?C, e tamb?m a 120?C apenas para a HPAM, e constru?do um modelo de decaimento exponencial da viscosidade espec?fica para determina??o da energia de ativa??o. Observou-se uma estabilidade similar dos pol?meros no estado s?lido e em solu??o, com valores de energias de ativa??o superiores no estado s?lido em fun??o do transporte de calor mais eficiente em solu??o. Os resultados obtidos condizem com as particularidades estruturais de cada pol?mero, sendo a HPAM o pol?mero com maior estabilidade e energia de ativa??o de 467,92 kJ mol-1 no estado s?lido e 79,4 kJ mol-1 em solu??o. Entre os pol?meros naturais a rigidez estrutural desempenhou um papel importante, onde a CMC com valores de energia de ativa??o de 293,3 e 55,1 kJ mol-1 no estado s?lido e em solu??o, respectivamente, foi mais est?vel que a KC com valores de 245,0 kJ mol-1 no estado s?lido e 35,8 kJ mol-1 em solu??o. E, por meio da rela??o entre as energias de ativa??o no estado s?lido e em solu??o, foi proposta a possibilidade de utiliza??o de um modelo matem?tico ?til para previs?o do comportamento de outros pol?meros em solu??o a partir da sua an?lise no estado s?lido. / The study of thermal degradation of polymers is essential to determine the stability of the structure and depends on the physical state where the polymer is. A comparative study of the thermal stability of kappa carrageenan (KC), partially hydrolyzed polyacrylamide (HPAM) and carboxymethylcellulose (CMC) was performed in an attempt to establish a correlation between the chemical structures, stability of these polymers and their activation energies in the solid state and solution. The thermal stability of the polymers in the solid state was evaluated by thermogravimetric analysis/derivative termogravimetric and the activation energy was calculated using the integral method Broido. As for the three solution polymers, viscosity measurements were made as a function of time at the temperatures 40, 60, 80 and 100 ?C, and also 120?C only for HPAM, and constructed an exponential decay model of the specific viscosity for determining the activation energy. We observed a similar stability of polymers in the solid state and in solution, with higher activation energies in the solid state due to the more efficient heat transport in solution. The results are consistent with the structural particularities of each polymer, being HPAM the polymer with greater stability and activation energy of 467.9 kJ mol-1 in the solid state and 79.4 kJ mol-1 in solution. Among the natural polymers structural rigidity played an important role, where the CMC with 293.35 activation energy values and 55.1 kJ mol-1 in the solid state and in solution, respectively, was more stable than KC with values of 245,0 kJ mol-1 in the solid state and 35.8 kJ mol-1 in solution. And, by the relationship between the activation energies in the solid state and in solution has been proposed the possibility of using a mathematical model for other useful polymers in solution behavior prediction from the analysis in the solid state.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufrn.br:123456789/21868
Date21 July 2016
CreatorsMorais, St?phanie Cavalcante de
Contributors65946499734, http://lattes.cnpq.br/7711521318854102, Rabello, Marcelo Silveira, 41924371472, http://lattes.cnpq.br/0384726674523131, Fernandes, Nedja Suely, 44420773472, http://lattes.cnpq.br/9563490368583906, Cardoso, Oldemar Ribeiro, Balaban, Ros?ngela de Carvalho
PublisherPROGRAMA DE P?S-GRADUA??O EM QU?MICA, UFRN, Brasil
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Repositório Institucional da UFRN, instname:Universidade Federal do Rio Grande do Norte, instacron:UFRN
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0027 seconds