Return to search

Transporte por reflexão de Andreev em pontos quânticos duplos acoplados a eletrodos supercondutores e ferromagnéticos / Andreev transport in double quantum dots coupled to superconductor and ferromagnetic leads

Orientador: Guillermo Gerardo Cabrera Oyarzun / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-09-24T19:09:49Z (GMT). No. of bitstreams: 1
Siqueira_EzequielCosta_D.pdf: 16155551 bytes, checksum: 43337169b3f9ac0ffbe444e3859ff790 (MD5)
Previous issue date: 2010 / Resumo: Neste trabalho é estudado o transporte quântico em nanoestruturas híbridas compostas por pontos quânticos (PQ) duplos acoplados a eletrodos supercondutores (S) e ferromagnéticos (F). A primeira nanoestrutura, denotada por F - PQa - PQb - S consiste em dois PQs em série acoplados a um eletrodo ferromagnético e outro supercondutor. O segundo sistema, denotado por (F1, F2) - PQa - PQb - S consiste em dois PQs em série acoplados a dois eletrodos ferromagnéticos e um supercondutor. Através do método de funções de Green de não equilíbrio foram obtidas expressões para a corrente elétrica, condutância diferencial, densidade local de estados (LDOS) e a transmitância para energias inferiores ao gap supercondutor. Neste regime, o mecanismo de transmissão de carga é a reflexão de Andreev, a qual permite controlar a corrente através da polarização do ferromagneto. A presença de interações nos PQs é considerada usando um tratamento de campo médio. Para o sistema F - PQa - PQb - S, as interações tendem a localizar os elétrons nos PQs levando a um padrão assimétrico da LDOS reduzindo a transmissão através da nanoestrutura. Em particular, a interação intra PQ levanta a degenerescência de spin reduzindo o valor máximo da corrente devido ao desequilíbrio nas populações de spin up e spin down. Regiões de condutância diferencial negativa (CDN) aparecem em determinados valores do potencial aplicado, como resultado da competição entre o espalhamento Andreev e as correlações eletrônicas. Aplicando-se um potencial de gate nos pontos quânticos é possível sintonizar o efeito mudando a região onde este fenômeno ocorre. Para o sistema (F1, F2) - PQa - PQb - S observou-se que o sinal da magnetoresistência pode mudar de positivo para negativo mudando-se o sinal do potencial aplicado. Além disso é possível controlar a corrente no primeiro eletrodo mudando-se o valor do potencial no segundo ferromagneto. Este tipo de controle pode ser interessante do ponto de vista de aplicações desde que é um comportamento similar a um transistor. Na presença de interações nos PQs, observou-se novamente regiões de CDN para determinados valores do potencial aplicado mesmo para quando os ferromagnetos estão completamente polarizados. Desta forma, a interação entre supercondutividade e correlações eletrônicas permitiu observar fenômenos originais mostrando que este sistemas podem ser utilizados em aplicações tecnológicas futuras / Abstract: In this work we studied the quantum transport in two hybrid nanostructures composed of double quantum dots (DQD)s coupled to superconductor (S) and ferromagnetic (F) leads. The first nanostructure, denoted by F - QDa - QDb - S, is composed of a ferromagnet, two quantum dots, and a superconductor connected in series. In the second nanostructure, denoted by ( F1, F2) - QDa - Q Db - S, a second ferromagnetic lead is added and coupled to the first QD. By using the non-equilibrium Green's function approach, we have calculated the electric current, the differential conductance and the transmittance for energies within the superconductor gap. In this regime, the mechanism of charge transmission is the Andreev re°ection, which allows for a control of the current through the ferromagnet polarization. We have also included interdot and intradot interactions, and have analyzed their influence through a mean field approximation. For the F - QDa - QDb - S system the presence of interactions tend to localize the electrons at the double-dot system, leading to an asymmetric pattern for the density of states at the dots, and thus reducing the transmission probability through the device. In particular, for non-zero polarization, the intradot interaction splits the spin degeneracy, reducing the maximum value of the current due to different spin-up and spin-down densities of states. Negative differential conductance (NDC) appears for some regions of the voltage bias, as a result of the interplay of the Andreev scattering with electronic correlations. By applying a gate voltage at the dots, one can tune the effect, changing the voltage region where this novel phenomenon appears. In the (F1, F2) - QDa - QDb - S, we have found that the signal of the magnetoresistance can be changed through the external potential applied in the ferromagnets. In addition, it is possible to control the current of the first ferromagnet (F1) through the potential applied in the second one (F2). This transistor-like behavior can be useful in technological applications. In the presence of interaction at the dots it was observed the NDC effect even when the electrodes were fully polarized. The results presented in this thesis show that the interplay between the superconductor correlation and electronic interactions can give rise to original effects which can be used in future technological applications / Doutorado / Física da Matéria Condensada / Doutor em Ciências

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/277834
Date04 July 2010
CreatorsSiqueira, Ezequiel Costa
ContributorsUNIVERSIDADE ESTADUAL DE CAMPINAS, Cabrera Oyarzún, Guillermo Gerardo, 1948-, Laks, Bernardo, Pagliuso, Pascoal José Giglio, Cardoso, Claudio Antonio, Dartora, Cesar Augusto
Publisher[s.n.], Universidade Estadual de Campinas. Instituto de Física Gleb Wataghin, Programa de Pós-Graduação em Física
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Format188 p. : il., application/pdf
Sourcereponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds