Tratamento sequencial químico-enzimático do bagaço de cana-de-açúcar e seu efeito na extração de xilana e na sacarificação da celulose residual / Chemical-enzymatic sequential treatment of sugarcane bagasse and its effect on xylan extraction and saccharification of residual cellulose

A biomassa lignocelulósica, como o bagaço de cana-de-açúcar, tem potencial para ser usado como matéria-prima na fabricação de produtos de valor agregado, uma vez que, seus componentes estruturais podem ser separados através de pré-tratamentos e utilizados em linhas de processos. Diferentes tipos de pré-tratamentos tem sido desenvolvidos com este objetivo, e neste contexto, foi proposto um tratamento sequencial químico-enzimático (SQE) do bagaço de cana-de-açúcar com três estágios; 1) Extração alcalina a frio (CAE): realizado com 10% (m/m) de NaOH por 30 min a 25ºC, 2) Pré-tratamento sulfito alcalino em etanol (ASE): realizado com 2,5% (m/m) de NaOH e 5% (m/m) de Na2SO3 em etanol (30 %v/v), por 2 h a 120ºC e 3) Extração enzimática da hemicelulose residual (EEH): conduzida com extrato comercial de xilanase (Luminase) a 5UI/g de biomassa em tampão fosfato de sódio 50 mM, pH 8 a 50ºC, por 6 horas e 24 horas. O tratamento SQE permitiu a solubilização de 48% e 60% da hemicelulose e 86% e 84% da lignina original do bagaço, diferenças obtidas em função do tempo de extração enzimática de 6 e 24 horas, respectivamente. Os sólidos resultantes da segunda etapa do pré-tratamento (polpa-P2) e da terceira etapa (polpa-P3) foram hidrolisados com o coquetel enzimático Cellic Ctec2 (10 FPU/g de glucana) por 48h a 50ºC, pH 4,8, nas consistências de 5%, 10% e 15% m/v. A extração enzimática de hemiceluloses (terceira etapa do tratamento SQE) da polpa-P2 não contribuiu com a hidrólise de celulose. Na consistência de 5%, as polpas P2 e P3 apresentaram 95 e 94% de conversão de celulose em 24h, valores similares foram obtidos para as polpas na consistência de 10%, porém em 48h de reação. A conversão de celulose das polpas P2 e P3 em 48h, a 15% de consistência, diminuiu para 84% e 81%, respectivamente. A polpa P3, proveniente da extração enzimática das hemiceluloses por 24h, apresentou um menor valor de conversão de celulose (74%), a 15% de consistência, evidenciando-se o efeito negativo da extração adicional de hemicelulose sobre a hidrólise da celulose. Embora não tenham sido observadas diferenças significativas nas porcentagens de conversão de celulose nas polpas P2 e P3, a implementação das três etapas de pré-tratamentos possibilitou a obtenção de duas frações diferentes de hemiceluloses, que foram recuperadas por precipitação com etanol, cada uma delas com características e aplicações potenciais diferentes. A composição química das hemiceluloses extraídas do bagaço de cana as define como arabinoxilana. As condições operacionais utilizadas na primeira etapa (CAE) do tratamento SQE gerou xilanas com maiores massas molares (34.598 g/mol) e mais contaminadas com lignina (18%) comparadas às xilanas recuperadas na terceira etapa (EEH), que apresentaram massas molares entre 9.948-11.678g/mol com 1,5- 3,5% de lignina. Nestas últimas foram identificados a presença de xilooligossacarideos (XOS) como xilotriose (X3), xilotetraose (X4) e xilopentaose (X5). / Lignocellulosic biomass such as sugarcane bagasse has the potential to be used as raw material in the manufacture of value-added products, since its structural components can be separated through pre-treatments and used in process lines. Different types of pretreatments have been developed with this objective, and in this context, a sequential chemical-enzymatic treatment (SQE) of three-stage sugarcane bagasse was proposed. 1) Cold alkaline extraction (CAE): performed with 10% (w/w) NaOH for 30 min at 25ºC, 2) Alkaline sulfite etanol pre-treatment (ASE): performed with 2.5% (w/w) NaOH and 5% (w/w) Na2SO3 in ethanol (30% v/v) for 2h at 120ºC and 3) Enzymatic extraction of residual hemicellulose (EEH): Conducted with commercial extract of xylanase (Luminase) at 5UI/g biomass in 50mM sodium phosphate buffer, pH 8 at 50ºC, for 6h and 24h. The SQE treatment allowed the solubilization of 48% and 60% of the hemicellulose and 86% and 84% of the original bagasse lignin, differences obtained as a function of the enzymatic extraction time of 6 and 24 hours, respectively. The solids resulting from the second stage (pulp P2) and the third stage (pulp P3) of the pretreatment were hydrolyzed with the enzymatic cocktail Cellic Ctec2 (10FPU/g glucan) for 48h at 50ºC pH 4.8, in the consistencies of 5%, 10% and 15% m/v. The enzymatic extraction of hemicelluloses (third stage of the treatment SQA) of the pulp-P2 did not contribute to the hydrolysis of cellulose. At the consistency of 5%, pulps P2 and P3 presented 95 and 94% of cellulose conversion in 24h, similar values were obtained for those pulps in the consistency of 10%, but in 48h of reaction. The cellulose conversion of pulps P2 and P3 in 48h, at 15% consistency decreased to 84% and 81%, respectively. The pulp P3, from the enzymatic extraction of the hemicelluloses for 24h, presented a lower value of cellulose conversion (74%), at 15% of consistency, evidencing the negative effect of the additional extraction of hemicellulose on the hydrolysis of cellulose. Although no significant differences were observed in the cellulose conversion percentages in the P2 and P3 pulps, the implementation of the three pretreatment steps allowed two different fractions of hemicelluloses to be obtained, which were recovered by precipitation with ethanol, each with characteristics and potential applications. The chemical composition of the hemicelluloses extracted from the sugarcane bagasse describes them as arabinoxylan. The operating conditions used in the first stage (CAE) of the SQE treatment generated xylans with higher molar masses (34,598 g/mol) and more lignin contaminants (18%) compared to the third stage (EEH) recovered xylans, which presented molar masses between 9,948-11,678g/mol with 1.5-3.5% lignin. In the latter, the presence of xylo-oligosaccharides (XOS) such as xylotriose (X3), xylotetraose (X4) and xylopentaose (X5) were identified.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-03122018-182200
Date02 August 2018
CreatorsLeidy Patricia Quintero Mora
ContributorsAdriane Maria Ferreira Milagres, Andre Aguiar Mendes, João Paulo Alves Silva
PublisherUniversidade de São Paulo, Biotecnologia Industrial, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.003 seconds