Subgrupos geométricos e seus comensuradores em grupos de tranças de superfície / Geometric subgroups and their commensurators in surface braid groups

Seja $B_mM$ o grupo de tranças com $m$ cordas sobre uma superfície $M$ e seja $N$ uma subsuperfície de $M$. Estudaremos inicialmente condições necessárias e suficientes para as quais $B_nN$ é um subgrupo de $B_mM$ ($m$ podendo ser diferente de $n$), isto é, se considerarmos a inclusão $i\\colon N \\to M$, queremos estabelecer condições sobre $M$ e $N$ para que a aplicação induzida $i_\\ast \\colon B_nN \\to B_mM$ seja injetora. Em seguida, sob certas hipóteses para $N$ e $M$ calcularemos o comensurador, normalizador e centralizador de $B_nN$ em $B_mM$, sendo esse o objetivo principal desta dissertação. / Let $B_m(M)$ be the braid group with $m$ strings on a surface $M$ and let $N$ be a subsurface of $M$. We will study the necessary and sufficient conditions out of which $B_n(N)$ is a subgroup of $B_m(M)$ ($m$ can be different of $n$), it means, if we consider the inclusion $i \\colon N \\to M$, we would like to establish conditions for $M$ and $N$ for the induced application $i_\\ast \\colon B_nN \\to B_mM$ should be injective. After that, under some certain conditions for $M$ and $N$ we will calculate the commensurator, normalizer and centralizer of $Bn(N)$ in $Bm(M)$, being this one the principal objective of this work.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-18092013-095636
Date02 April 2009
CreatorsOscar Eduardo Ocampo Uribe
ContributorsDaciberg Lima Goncalves, Tomas Edson Barros, Oziride Manzoli Neto
PublisherUniversidade de São Paulo, Matemática, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0018 seconds