• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 8
  • 8
  • 8
  • 8
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A propriedade de Borsuk-Ulam para funções entre superfícies / The Borsuk-Ulam property for functions between surfaces

Laass, Vinicius Casteluber 21 July 2015 (has links)
Sejam $M$ e $N$ superfícies fechadas e $\\tau: M \\to M$ uma involução livre de pontos fixos. Dizemos que uma classe de homotopia $\\beta \\in [M,N]$ tem a propriedade de Borsuk-Ulam se para toda função contínua $g: M \\to N$ que representa $\\beta$, existe $x \\in M$ tal que $g(\\tau(x)) = g(x)$. No caso em que $N$ é diferente de $S^2$ e $RP^2$, mostramos que $\\beta$ não ter a propriedade de Borsuk-Ulam é equivalente a existência de um diagrama algébrico envolvendo $\\pi_1(M)$, $\\pi_1(M_\\tau)$, $P_2(N)$ e $B_2(N)$, sendo $M_\\tau$ o espaço de órbitas de $\\tau$ e sendo $P_2 (N)$ e $B_2(N)$, respectivamente, o grupo de tranças puras e totais de $N$. Para cada caso listado abaixo, nós classificamos todas as classes de homotopia $\\beta \\in [M,N]$ que têm a propriedade de Borsuk-Ulam: $M = T^2$, $M_\\tau = T^2$ e $N = T^2$; $M = T^2$, $M_\\tau = K^2$ e $N = T^2$; $M = K^2$ e $N = T^2$; $M = T^2$, $M_\\tau = T^2$ e $N = K^2$. No caso em que $N = S^2$, para cada superfície $M$ e involução $\\tau: M \\to M$, nós classificamos os elementos $\\beta \\in [M,S^2]$ que têm a propriedade de Borsuk-Ulam. Para fazer tal classificação, nós usamos a teoria de funções equivariantes e a teoria de grau de aplicações. Para classes de homotopia $\\beta \\in [M,RP^2]$, classificamos aquelas que se levantam para $S^2$. No final, nós consideramos a propriedade de Borsuk-Ulam para ações livres de $Z_p$, com $p$ um inteiro primo positivo. Neste caso, mostramos que se $M$ e $N$ são superfícies fechadas e $Z_p$ age livremente em M, com $p$ ímpar, então sempre existe uma função $f: M \\to N$ homotópica a uma função constante e cuja restrição a cada órbita da ação é injetora. / Let $M$ and $N$ be compact surfaces without boundary, and let $\\tau: M \\to M$ be a fixed-point free involution. We say that a homotopy class $\\beta \\in [M,N]$ has the Borsuk-Ulam property if for every continuous fuction $g: M \\to N$ that represents $\\beta$, there exists $x \\in M$ such that $g(\\tau(x)) = g(x)$. In the case where $N$ is different of $S^2$ and $RP^2$, we show that the fact that $\\beta$ does not have the Borsuk-Ulam property is equivalent to the existence of an algebraic diagram involving $\\pi_1(M)$, $\\pi_1(M_\\tau), $P_2(N)$ and $B_2(N)$, where $M_\\tau$ is the orbit space of $\\tau$ and $P_2(N)$ and $B_2(N) $ are the pure and the full braid groups of the surface $N$ respectively. We then go on to consider the cases of the torus $T^2$ and the Klein bottle $K^2$. Let $M$ and $N$ satisfy one of the following: $M = T^2$, $M_\\tau = T^2$ and $N = T^2$; $M = T^2$, $M_\\tau = K^2$ and $N = T^2$; $M = K^2$ and $N = T^2$; $M = T^2$, $M_\\tau = T^2$ and $N = K^2$. In these cases we classify the homotopy classes $\\beta \\in [M,N]$ that possess the Borsuk-Ulam property. If $N= S^2$, for every surface $M$ and an involution $\\tau: M \\to M$, we classify the elements $\\beta \\in [M, S^2] $ that possess the Borsuk-Ulam property. To obtain this classification, we make use of the theory of equivariant functions and degree theory of maps. For homotopy classes $\\beta \\in [M,RP^2]$, we classify the classes that admit a lifting to $S^2$. Finally, we consider the Borsuk-Ulam property for free actions of $Z_p$, where $p$ is a prime number. If $M$ and $N$ are compact surfaces without boundary such that $Z_p$ acts freely on $M$, with $p$ odd, we show that there is always a function $f: M \\to N$ homotopic to the constant function whose restriction to every orbit of $\\tau$ is injective.
2

A propriedade de Borsuk-Ulam para funções entre superfícies / The Borsuk-Ulam property for functions between surfaces

Vinicius Casteluber Laass 21 July 2015 (has links)
Sejam $M$ e $N$ superfícies fechadas e $\\tau: M \\to M$ uma involução livre de pontos fixos. Dizemos que uma classe de homotopia $\\beta \\in [M,N]$ tem a propriedade de Borsuk-Ulam se para toda função contínua $g: M \\to N$ que representa $\\beta$, existe $x \\in M$ tal que $g(\\tau(x)) = g(x)$. No caso em que $N$ é diferente de $S^2$ e $RP^2$, mostramos que $\\beta$ não ter a propriedade de Borsuk-Ulam é equivalente a existência de um diagrama algébrico envolvendo $\\pi_1(M)$, $\\pi_1(M_\\tau)$, $P_2(N)$ e $B_2(N)$, sendo $M_\\tau$ o espaço de órbitas de $\\tau$ e sendo $P_2 (N)$ e $B_2(N)$, respectivamente, o grupo de tranças puras e totais de $N$. Para cada caso listado abaixo, nós classificamos todas as classes de homotopia $\\beta \\in [M,N]$ que têm a propriedade de Borsuk-Ulam: $M = T^2$, $M_\\tau = T^2$ e $N = T^2$; $M = T^2$, $M_\\tau = K^2$ e $N = T^2$; $M = K^2$ e $N = T^2$; $M = T^2$, $M_\\tau = T^2$ e $N = K^2$. No caso em que $N = S^2$, para cada superfície $M$ e involução $\\tau: M \\to M$, nós classificamos os elementos $\\beta \\in [M,S^2]$ que têm a propriedade de Borsuk-Ulam. Para fazer tal classificação, nós usamos a teoria de funções equivariantes e a teoria de grau de aplicações. Para classes de homotopia $\\beta \\in [M,RP^2]$, classificamos aquelas que se levantam para $S^2$. No final, nós consideramos a propriedade de Borsuk-Ulam para ações livres de $Z_p$, com $p$ um inteiro primo positivo. Neste caso, mostramos que se $M$ e $N$ são superfícies fechadas e $Z_p$ age livremente em M, com $p$ ímpar, então sempre existe uma função $f: M \\to N$ homotópica a uma função constante e cuja restrição a cada órbita da ação é injetora. / Let $M$ and $N$ be compact surfaces without boundary, and let $\\tau: M \\to M$ be a fixed-point free involution. We say that a homotopy class $\\beta \\in [M,N]$ has the Borsuk-Ulam property if for every continuous fuction $g: M \\to N$ that represents $\\beta$, there exists $x \\in M$ such that $g(\\tau(x)) = g(x)$. In the case where $N$ is different of $S^2$ and $RP^2$, we show that the fact that $\\beta$ does not have the Borsuk-Ulam property is equivalent to the existence of an algebraic diagram involving $\\pi_1(M)$, $\\pi_1(M_\\tau), $P_2(N)$ and $B_2(N)$, where $M_\\tau$ is the orbit space of $\\tau$ and $P_2(N)$ and $B_2(N) $ are the pure and the full braid groups of the surface $N$ respectively. We then go on to consider the cases of the torus $T^2$ and the Klein bottle $K^2$. Let $M$ and $N$ satisfy one of the following: $M = T^2$, $M_\\tau = T^2$ and $N = T^2$; $M = T^2$, $M_\\tau = K^2$ and $N = T^2$; $M = K^2$ and $N = T^2$; $M = T^2$, $M_\\tau = T^2$ and $N = K^2$. In these cases we classify the homotopy classes $\\beta \\in [M,N]$ that possess the Borsuk-Ulam property. If $N= S^2$, for every surface $M$ and an involution $\\tau: M \\to M$, we classify the elements $\\beta \\in [M, S^2] $ that possess the Borsuk-Ulam property. To obtain this classification, we make use of the theory of equivariant functions and degree theory of maps. For homotopy classes $\\beta \\in [M,RP^2]$, we classify the classes that admit a lifting to $S^2$. Finally, we consider the Borsuk-Ulam property for free actions of $Z_p$, where $p$ is a prime number. If $M$ and $N$ are compact surfaces without boundary such that $Z_p$ acts freely on $M$, with $p$ odd, we show that there is always a function $f: M \\to N$ homotopic to the constant function whose restriction to every orbit of $\\tau$ is injective.
3

Subgrupos geométricos e seus comensuradores em grupos de tranças de superfície / Geometric subgroups and their commensurators in surface braid groups

Ocampo Uribe, Oscar Eduardo 02 April 2009 (has links)
Seja $B_mM$ o grupo de tranças com $m$ cordas sobre uma superfície $M$ e seja $N$ uma subsuperfície de $M$. Estudaremos inicialmente condições necessárias e suficientes para as quais $B_nN$ é um subgrupo de $B_mM$ ($m$ podendo ser diferente de $n$), isto é, se considerarmos a inclusão $i\\colon N \\to M$, queremos estabelecer condições sobre $M$ e $N$ para que a aplicação induzida $i_\\ast \\colon B_nN \\to B_mM$ seja injetora. Em seguida, sob certas hipóteses para $N$ e $M$ calcularemos o comensurador, normalizador e centralizador de $B_nN$ em $B_mM$, sendo esse o objetivo principal desta dissertação. / Let $B_m(M)$ be the braid group with $m$ strings on a surface $M$ and let $N$ be a subsurface of $M$. We will study the necessary and sufficient conditions out of which $B_n(N)$ is a subgroup of $B_m(M)$ ($m$ can be different of $n$), it means, if we consider the inclusion $i \\colon N \\to M$, we would like to establish conditions for $M$ and $N$ for the induced application $i_\\ast \\colon B_nN \\to B_mM$ should be injective. After that, under some certain conditions for $M$ and $N$ we will calculate the commensurator, normalizer and centralizer of $Bn(N)$ in $Bm(M)$, being this one the principal objective of this work.
4

Subgrupos geométricos e seus comensuradores em grupos de tranças de superfície / Geometric subgroups and their commensurators in surface braid groups

Oscar Eduardo Ocampo Uribe 02 April 2009 (has links)
Seja $B_mM$ o grupo de tranças com $m$ cordas sobre uma superfície $M$ e seja $N$ uma subsuperfície de $M$. Estudaremos inicialmente condições necessárias e suficientes para as quais $B_nN$ é um subgrupo de $B_mM$ ($m$ podendo ser diferente de $n$), isto é, se considerarmos a inclusão $i\\colon N \\to M$, queremos estabelecer condições sobre $M$ e $N$ para que a aplicação induzida $i_\\ast \\colon B_nN \\to B_mM$ seja injetora. Em seguida, sob certas hipóteses para $N$ e $M$ calcularemos o comensurador, normalizador e centralizador de $B_nN$ em $B_mM$, sendo esse o objetivo principal desta dissertação. / Let $B_m(M)$ be the braid group with $m$ strings on a surface $M$ and let $N$ be a subsurface of $M$. We will study the necessary and sufficient conditions out of which $B_n(N)$ is a subgroup of $B_m(M)$ ($m$ can be different of $n$), it means, if we consider the inclusion $i \\colon N \\to M$, we would like to establish conditions for $M$ and $N$ for the induced application $i_\\ast \\colon B_nN \\to B_mM$ should be injective. After that, under some certain conditions for $M$ and $N$ we will calculate the commensurator, normalizer and centralizer of $Bn(N)$ in $Bm(M)$, being this one the principal objective of this work.
5

Grupos de tranças do espaço projetivo / Braid groups of projective plane

Laass, Vinicius Casteluber 23 February 2011 (has links)
Dada uma superfície M, definiremos os grupos de tranças de M, denotado por \'B IND. n\' (M), geometricamente e usando a noção de espaços de confiuração. Mostraremos a equivalência das definições. Na mesma linha de raciocínio, definiremos os grupos de tranças puras de superfícies \'P IND. n\' (M). Apresentaremos as propriedades mais importantes dos grupos de tranças do plano e mostraremos que \'B IND. n\' (\'R POT. 2\') injeta em \'B IND. n\' (M), para muitas superfícies M. Mais detalhadamente, obteremos a apresentação de \'B IND. n\' (\'RP POT. 2\' ) e \'P IND. n\'(\'RP POT. 2\') / For a surface M, we define the braid groups of M, \'B IND. n\'(M), geometricaly and using the notion of configuration spaces. We show the equivalence of these definitions. In the sequence, we define the pure braid group of M, \'P IND. n\' (M). We present the most important properties of braid groups of the plane and we show that \'B IND. n\'\'(\'R POT. 2\') embedds in \'B IND. n\' (M), for almost all M. In a more detailed fashion, we present \'B IND. n\' (\'RP POT. 2\') and \'P IND. n\' (\'RP POT. 2)
6

Grupos de tranças do espaço projetivo / Braid groups of projective plane

Vinicius Casteluber Laass 23 February 2011 (has links)
Dada uma superfície M, definiremos os grupos de tranças de M, denotado por \'B IND. n\' (M), geometricamente e usando a noção de espaços de confiuração. Mostraremos a equivalência das definições. Na mesma linha de raciocínio, definiremos os grupos de tranças puras de superfícies \'P IND. n\' (M). Apresentaremos as propriedades mais importantes dos grupos de tranças do plano e mostraremos que \'B IND. n\' (\'R POT. 2\') injeta em \'B IND. n\' (M), para muitas superfícies M. Mais detalhadamente, obteremos a apresentação de \'B IND. n\' (\'RP POT. 2\' ) e \'P IND. n\'(\'RP POT. 2\') / For a surface M, we define the braid groups of M, \'B IND. n\'(M), geometricaly and using the notion of configuration spaces. We show the equivalence of these definitions. In the sequence, we define the pure braid group of M, \'P IND. n\' (M). We present the most important properties of braid groups of the plane and we show that \'B IND. n\'\'(\'R POT. 2\') embedds in \'B IND. n\' (M), for almost all M. In a more detailed fashion, we present \'B IND. n\' (\'RP POT. 2\') and \'P IND. n\' (\'RP POT. 2)
7

Grupos de tranças Brunnianas e grupos de  homotopia da esfera S2 / Brunnian braid groups and homotopy groups of the sphere S2

Ocampo Uribe, Oscar Eduardo 02 July 2013 (has links)
A relação entre os grupos de tranças de superfícies e os grupos de homotopia das esferas é atualmente um tópico de bastante interesse. Nos últimos anos tem sido feitos avanços consideráveis no estudo desta relação no caso dos grupos de tranças de Artin com n cordas, denotado por Bn, da esfera e do plano projetivo. Nessa tese analisamos com detalhes as interações entre a teoria de tranças e a teoria de homotopia, e mostramos novos resultados que estabelecem conexões entre os grupos de homotopia da 2-esfera S2 e os grupos de tranças sobre qualquer superfície. No andamento deste trabalho, descobrimos uma conexão surpreendente dos grupos de tranças com os grupos cristalográficos e de Bieberbach: para n maior ou igual que 3, o grupo quociente Bn/[Pn, Pn] é um grupo cristalográfico que contém grupos de Bieberbach como subgrupos, onde Pn é o subgrupo de tranças puras de Bn. Com isto obtivemos uma formulação de um Teorema de Auslander e Kuranishi para 2-grupos finitos e exibimos variedades Riemannianas compactas planas que admitem difeomorfismo de Anosov e cujo grupo de holonomia é Z2k . Além disso, durante esta tese, detectamos e, quando possível, corrigimos algumas imprecisões em dois importantes artigos nessa área de estudo, escritos por J. Berrick, F. R. Cohen, Y. L. Wong e J. Wu (Jour. Amer. Math. Soc. - 2006) assim como por J. Y. Li e J.Wu (Proc. London Math. Soc. - 2009). / The relation between surface braid groups and homotopy groups of spheres is currently a subject of great interest. Considerable progress has been made in recent years in the study of these relations in the case of the n-string Artin braid groups, denoted by Bn, the sphere and the projective plane. In this thesis we analyse in detail the interactions between braid theory and homotopy theory, and we present new results that establish connections between the homotopy groups of the 2-sphere S2 and the braid groups of any surface. During the course of this work, we discovered an unexpected connection of braid groups with crystallographic and Bieberbach groups: for n greater or equal than 3, the quotient group Bn/[Pn, Pn] is a crystallographic group that contains Bieberbach groups as subgroups, where Pn is the pure braid subgroup of Bn. This enables us to obtain a formulation of a theorem of Auslander and Kuranishi for finite 2-groups, and to exhibit Riemannian compact flat manifolds that admit Anosov diffeomorphisms and whose holonomy group is Z2k. In addition, during the thesis, we have detected, and where possible, corrected some inaccuracies in two important papers in the area of study, by J. Berrick, F. R. Cohen, Y. L. Wong and J. Wu (Jour. Amer. Math. Soc. - 2006), and by J. Y. Li and J. Wu (Proc. London Math. Soc. - 2009).
8

Grupos de tranças Brunnianas e grupos de  homotopia da esfera S2 / Brunnian braid groups and homotopy groups of the sphere S2

Oscar Eduardo Ocampo Uribe 02 July 2013 (has links)
A relação entre os grupos de tranças de superfícies e os grupos de homotopia das esferas é atualmente um tópico de bastante interesse. Nos últimos anos tem sido feitos avanços consideráveis no estudo desta relação no caso dos grupos de tranças de Artin com n cordas, denotado por Bn, da esfera e do plano projetivo. Nessa tese analisamos com detalhes as interações entre a teoria de tranças e a teoria de homotopia, e mostramos novos resultados que estabelecem conexões entre os grupos de homotopia da 2-esfera S2 e os grupos de tranças sobre qualquer superfície. No andamento deste trabalho, descobrimos uma conexão surpreendente dos grupos de tranças com os grupos cristalográficos e de Bieberbach: para n maior ou igual que 3, o grupo quociente Bn/[Pn, Pn] é um grupo cristalográfico que contém grupos de Bieberbach como subgrupos, onde Pn é o subgrupo de tranças puras de Bn. Com isto obtivemos uma formulação de um Teorema de Auslander e Kuranishi para 2-grupos finitos e exibimos variedades Riemannianas compactas planas que admitem difeomorfismo de Anosov e cujo grupo de holonomia é Z2k . Além disso, durante esta tese, detectamos e, quando possível, corrigimos algumas imprecisões em dois importantes artigos nessa área de estudo, escritos por J. Berrick, F. R. Cohen, Y. L. Wong e J. Wu (Jour. Amer. Math. Soc. - 2006) assim como por J. Y. Li e J.Wu (Proc. London Math. Soc. - 2009). / The relation between surface braid groups and homotopy groups of spheres is currently a subject of great interest. Considerable progress has been made in recent years in the study of these relations in the case of the n-string Artin braid groups, denoted by Bn, the sphere and the projective plane. In this thesis we analyse in detail the interactions between braid theory and homotopy theory, and we present new results that establish connections between the homotopy groups of the 2-sphere S2 and the braid groups of any surface. During the course of this work, we discovered an unexpected connection of braid groups with crystallographic and Bieberbach groups: for n greater or equal than 3, the quotient group Bn/[Pn, Pn] is a crystallographic group that contains Bieberbach groups as subgroups, where Pn is the pure braid subgroup of Bn. This enables us to obtain a formulation of a theorem of Auslander and Kuranishi for finite 2-groups, and to exhibit Riemannian compact flat manifolds that admit Anosov diffeomorphisms and whose holonomy group is Z2k. In addition, during the thesis, we have detected, and where possible, corrected some inaccuracies in two important papers in the area of study, by J. Berrick, F. R. Cohen, Y. L. Wong and J. Wu (Jour. Amer. Math. Soc. - 2006), and by J. Y. Li and J. Wu (Proc. London Math. Soc. - 2009).

Page generated in 0.0808 seconds