Spelling suggestions: "subject:"projective plant"" "subject:"projective plans""
1 |
On Projective Planes & Rational IdentitiesBrunson, Jason Cornelius 24 May 2005 (has links)
One of the marvelous phenomena of coordinate geometry is the equivalence of Desargues' Theorem to the presence of an underlying division ring in a projective plane. Supplementing this correspondence is the general theory of intersection theorems, which, restricted to desarguian projective planes P, corresponds precisely to the theory of integral rational identities, restricted to division rings D. The first chapter of this paper introduces projective planes, develops the concept of an intersection theorem, and expounds upon the Theorem of Desargues; the discussion culminates with a proof of the desarguian phenomenon in the second chapter. The third chapter characterizes the automorphisms of P and introduces the theory of polynomial identities; the fourth chapter expands this discussion to rational identities and cements the ``dictionary''. The last section describes a measure of complexity for these intersection theorems, and the paper concludes with a curious spawn of the correspondence. / Master of Science
|
2 |
Restrictions of Steiner Bundles and Divisors on the Hilbert Scheme of Points in the PlaneHuizenga, Jack 18 September 2012 (has links)
The Hilbert scheme of \(n\) points in the projective plane parameterizes degree \(n\) zero-dimensional subschemes of the projective plane. We examine the dual cones of effective divisors and moving curves on the Hilbert scheme. By studying interpolation, restriction, and stability properties of certain vector bundles on the plane we fully determine these cones for just over three fourths of all values of \(n\). A general Steiner bundle on \(\mathbb{P}^N\) is a vector bundle \(E\) admitting a resolution of the form \(0 \rightarrow \mathcal{O}_{\mathbb{P}^N} (−1)^s {M \atop \rightarrow} \mathcal{O}^{s+r}_{\mathbb{P}^N} \rightarrow E \rightarrow 0\), where the map \(M\) is general. We complete the classification of slopes of semistable Steiner bundles on \(\mathbb{P}^N\) by showing every admissible slope is realized by a bundle which restricts to a balanced bundle on a rational curve. The proof involves a basic question about multiplication of polynomials on \(\mathbb{P}^1\) which is interesting in its own right. / Mathematics
|
3 |
Polotělesa a planární funkce / Semifields and planar functionsHrubešová, Tereza January 2018 (has links)
The aim of this diploma thesis is to introduce the topic of semifields and to explain its connection with planar functions. From its beginning the thesis leads to the formulation of relation between commutative se- mifields of odd order and planar Dembowski-Ostrom polynomials, which R. S. Coulter and M. Henderson introduce in their article from 2008. At the beginning of the thesis there is a short introduction to projective and affine planes. The thesis further describes coordinatization of projective plane by planar ternary ring. It also aims to investigate properties of ternary ring depending on the number of perspectivities in the projective plane. One of the chapters is dedicated to the isotopy of loops, which can be applied directly on the isotopy of semifields. The thesis mainly focuses on the proof of denoted correspondence between commutative semifields of odd order and planar Dembowski-Ostrom polynomials. Finally, several corrolaries of this relation and the isotopy of semifields are declared. 1
|
4 |
Kuželosečky v projektivní rovině / Conics in projective planeVeselá, Klára Alexandra January 2022 (has links)
This master thesis deals with conics in the real projective plane. The goal was to com- prehensibly introduce conics in the projective plane to high-school students and teachers. In order to fulfill this goal, the projective plane and homogenous coordinates were intro- duced, and harmonic set and priniple of duality were studied closely. The conics in the projective plane were approached from the perspective of history, and various definitions. Well-motivated introduction of a pole and a polar was emphasized.
|
5 |
Finding obstructions within irreducible triangulationsCampbell, Russell J. 01 June 2017 (has links)
The main results of this dissertation show evidence supporting the Successive Surface Scaffolding Conjecture. This is a new conjecture that, if true, guarantees the existence of all the wye-delta-order minimal obstructions of a surface S as subgraphs of the irreducible triangulations of the surface S with a crosscap added. A new data structure, i.e. an augmented rotation system, is presented and used to create an exponential-time algorithm for embedding graphs in any surface with a constant-time check of the change in genus when inserting an edge. A depiction is a new formal definition for representing an embedding graphically, and it is shown that more than one depiction can be given for nonplanar embeddings, and that sometimes two depictions for the same embedding can be drastically different from each other. An algorithm for finding the essential cycles of an embedding is given, and is used to confirm for the projective-plane obstructions, a theorem that shows any embedding of an obstruction must have every edge in an essential cycle. Obstructions of a general surface S that are minor-minimal and not double-wye-delta-minimal are shown to each have an embedding on the surface S with a crosscap added. Finally, open questions for further research are presented. / Graduate
|
6 |
Grupos de tranças do espaço projetivo / Braid groups of projective planeLaass, Vinicius Casteluber 23 February 2011 (has links)
Dada uma superfície M, definiremos os grupos de tranças de M, denotado por \'B IND. n\' (M), geometricamente e usando a noção de espaços de confiuração. Mostraremos a equivalência das definições. Na mesma linha de raciocínio, definiremos os grupos de tranças puras de superfícies \'P IND. n\' (M). Apresentaremos as propriedades mais importantes dos grupos de tranças do plano e mostraremos que \'B IND. n\' (\'R POT. 2\') injeta em \'B IND. n\' (M), para muitas superfícies M. Mais detalhadamente, obteremos a apresentação de \'B IND. n\' (\'RP POT. 2\' ) e \'P IND. n\'(\'RP POT. 2\') / For a surface M, we define the braid groups of M, \'B IND. n\'(M), geometricaly and using the notion of configuration spaces. We show the equivalence of these definitions. In the sequence, we define the pure braid group of M, \'P IND. n\' (M). We present the most important properties of braid groups of the plane and we show that \'B IND. n\'\'(\'R POT. 2\') embedds in \'B IND. n\' (M), for almost all M. In a more detailed fashion, we present \'B IND. n\' (\'RP POT. 2\') and \'P IND. n\' (\'RP POT. 2)
|
7 |
Grupos de tranças do espaço projetivo / Braid groups of projective planeVinicius Casteluber Laass 23 February 2011 (has links)
Dada uma superfície M, definiremos os grupos de tranças de M, denotado por \'B IND. n\' (M), geometricamente e usando a noção de espaços de confiuração. Mostraremos a equivalência das definições. Na mesma linha de raciocínio, definiremos os grupos de tranças puras de superfícies \'P IND. n\' (M). Apresentaremos as propriedades mais importantes dos grupos de tranças do plano e mostraremos que \'B IND. n\' (\'R POT. 2\') injeta em \'B IND. n\' (M), para muitas superfícies M. Mais detalhadamente, obteremos a apresentação de \'B IND. n\' (\'RP POT. 2\' ) e \'P IND. n\'(\'RP POT. 2\') / For a surface M, we define the braid groups of M, \'B IND. n\'(M), geometricaly and using the notion of configuration spaces. We show the equivalence of these definitions. In the sequence, we define the pure braid group of M, \'P IND. n\' (M). We present the most important properties of braid groups of the plane and we show that \'B IND. n\'\'(\'R POT. 2\') embedds in \'B IND. n\' (M), for almost all M. In a more detailed fashion, we present \'B IND. n\' (\'RP POT. 2\') and \'P IND. n\' (\'RP POT. 2)
|
8 |
Lineární kódy a projektivní rovina řádu 10 / Linear codes and a projective plane of order 10Liška, Ondřej January 2013 (has links)
Projective plane of order 10 does not exist. Proof of this assertion was finished in 1989 and is based on the nonexistence of a binary code C generated by the incidence vectors of the plane's lines. As part of the proof of the nonexistence of code C, the coefficients of its weight enumerator were studied. It was shown that coefficients A12, A15, A16 and A19 have to be equal to zero, which contradicted other findings about the relationship among the coefficients. Presented diploma thesis elaborately analyses the phases of the proof and, in several places, enhances them with new observations and simplifications. Part of the proof is generalized for projective planes of order 8m + 2. 1
|
9 |
Trois problèmes géométriques d'hyperbolicité complexe et presque complexe / Three geometric problems of complex and almost complex hyperbolicitySaleur, Benoît 22 November 2011 (has links)
Cette thèse est consacrée à l'étude de trois problèmes d'hyperbolicité complexe et presque complexe. La première partie est dédiée à la recherche d'une conséquence quantitative de l'hyperbolicité au sens de Kobayashi, qui est une propriété qualitative. Le résultat obtenu prend la forme d'une inégalité isopérimétrique qui évoque l'inégalité d'Ahlfors relative aux recouvrements des surfaces de surfaces. Sa démonstration est purement riemannienne.La deuxième partie de la thèse est consacrée à la démonstration d'une version presque complexe du théorème de Borel, qui affirme que les courbes entières dans le plan projectif complexe évitant quatre droites en position générale sont linéairement dégénérées. Dans un plan projectif presque complexe, les J-droites substituent aux droites projectives et nous disposons d'un énoncé analogue pour les J-courbes entières. La démonstration de ce résultat repose sur l'utilisation de projections centrales et sur la théorie de recouvrement des surfaces d'Ahlfors.La dernière partie est consacrée à la démonstration d'une version presque complexe du théorème de Bloch, qui affirme qu'une suite non normale de disques holomorphes du plan projectif évitant quatre droites en position générale converge, en un certain sens, vers une réunion de trois droites. Notre résultat implique en particulier l'hyperbolicité du complémentaire dans le plan projectif presque complexe de quatre J-droites modulo trois J-droites. / This thesis is dedicated to the study of three problems of complex and almost complex hyperbolicity. Its first part is dedicated to the research of a quantitative consequence to Kobayashi hyperbolicity, which is a qualitative property. The result we obtain has the form of an isoperimetric inequality that suggests Ahlfors' inequality, the central result of the theory of covering surfaces. Its proof uses only riemannian tools.The second part of the thesis is dedicated to the proof of an almost complex version of Borel's theorem, which says that an entire curve in the compex preojective plane missing four lines in general position is degenerate. In an almost compex context, we can obtain a similar result for entire J-curves just by replacing projective lines by J-lines. The proof of this result uses central projections and Ahlfors' theory of covering surfaces.The last part is dedicated to the proof of an almost complex version of Bloch's theorem, which says that given a sequence of holomorphic discs in the projective plane, either it is normal, either it converges in some sens to a reunion of three lines. Our result will show in particular that the complementary set of four J-lines in general position is hyperbolic modulo three J-lines.
|
10 |
Sobre folheações projetivas sem soluções algébricasPenao, Giovanna Arelis Baldeón 30 May 2018 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2018-08-22T18:18:00Z
No. of bitstreams: 1
giovannaarelisbaldeonpenao.pdf: 709529 bytes, checksum: 3a96b8a9a33c7117ccbff2e2ff41c7c0 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-09-03T16:34:23Z (GMT) No. of bitstreams: 1
giovannaarelisbaldeonpenao.pdf: 709529 bytes, checksum: 3a96b8a9a33c7117ccbff2e2ff41c7c0 (MD5) / Made available in DSpace on 2018-09-03T16:34:23Z (GMT). No. of bitstreams: 1
giovannaarelisbaldeonpenao.pdf: 709529 bytes, checksum: 3a96b8a9a33c7117ccbff2e2ff41c7c0 (MD5)
Previous issue date: 2018-05-30 / O objetivo deste trabalho é estudar um método, apresentado em [6], que nos permite
determinar se uma folheação no plano projetivo possui ou não soluções algébricas, usando
apenas métodos de computação algébrica. Mais especificamente usando bases de Gröbner.
Com este método é possível procurar por outros exemplos de folheações sem soluções
algébricas. / The aim of this work is to present a method, given by S. C. Coutinho and Bruno F. M.
Ribeiro in [6], to check whether certain holomorphic foliations on the complex projective
plane have algebraic solutions, using only methods of algebraic computing or more precisely,
using Gröbner bases. This algorithm is then used to produce examples of foliations without
algebraic solutions.
|
Page generated in 0.0748 seconds