• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Grupos de tranças do espaço projetivo / Braid groups of projective plane

Laass, Vinicius Casteluber 23 February 2011 (has links)
Dada uma superfície M, definiremos os grupos de tranças de M, denotado por \'B IND. n\' (M), geometricamente e usando a noção de espaços de confiuração. Mostraremos a equivalência das definições. Na mesma linha de raciocínio, definiremos os grupos de tranças puras de superfícies \'P IND. n\' (M). Apresentaremos as propriedades mais importantes dos grupos de tranças do plano e mostraremos que \'B IND. n\' (\'R POT. 2\') injeta em \'B IND. n\' (M), para muitas superfícies M. Mais detalhadamente, obteremos a apresentação de \'B IND. n\' (\'RP POT. 2\' ) e \'P IND. n\'(\'RP POT. 2\') / For a surface M, we define the braid groups of M, \'B IND. n\'(M), geometricaly and using the notion of configuration spaces. We show the equivalence of these definitions. In the sequence, we define the pure braid group of M, \'P IND. n\' (M). We present the most important properties of braid groups of the plane and we show that \'B IND. n\'\'(\'R POT. 2\') embedds in \'B IND. n\' (M), for almost all M. In a more detailed fashion, we present \'B IND. n\' (\'RP POT. 2\') and \'P IND. n\' (\'RP POT. 2)
2

The construction of finite soluble factor groups of finitely presented groups and its application

Wegner, Alexander January 1992 (has links)
Computational group theory deals with the design, analysis and computer implementation of algorithms for solving computational problems involving groups, and with the applications of the programs produced to interesting questions in group theory, in other branches of mathematics, and in other areas of science. This thesis describes an implementation of a proposal for a Soluble Quotient Algorithm, i.e. a description of the algorithms used and a report on the findings of an empirical study of the behaviour of the programs, and gives an account of an application of the programs. The programs were used for the construction of soluble groups with interesting properties, e.g. for the construction of soluble groups of large derived length which seem to be candidates for groups having efficient presentations. New finite soluble groups of derived length six with trivial Schur multiplier and efficient presentations are described. The methods for finding efficient presentations proved to be only practicable for groups of moderate order. Therefore, for a given derived length soluble groups of small order are of interest. The minimal soluble groups of derived length less than or equal to six are classified.
3

Grupos de tranças do espaço projetivo / Braid groups of projective plane

Vinicius Casteluber Laass 23 February 2011 (has links)
Dada uma superfície M, definiremos os grupos de tranças de M, denotado por \'B IND. n\' (M), geometricamente e usando a noção de espaços de confiuração. Mostraremos a equivalência das definições. Na mesma linha de raciocínio, definiremos os grupos de tranças puras de superfícies \'P IND. n\' (M). Apresentaremos as propriedades mais importantes dos grupos de tranças do plano e mostraremos que \'B IND. n\' (\'R POT. 2\') injeta em \'B IND. n\' (M), para muitas superfícies M. Mais detalhadamente, obteremos a apresentação de \'B IND. n\' (\'RP POT. 2\' ) e \'P IND. n\'(\'RP POT. 2\') / For a surface M, we define the braid groups of M, \'B IND. n\'(M), geometricaly and using the notion of configuration spaces. We show the equivalence of these definitions. In the sequence, we define the pure braid group of M, \'P IND. n\' (M). We present the most important properties of braid groups of the plane and we show that \'B IND. n\'\'(\'R POT. 2\') embedds in \'B IND. n\' (M), for almost all M. In a more detailed fashion, we present \'B IND. n\' (\'RP POT. 2\') and \'P IND. n\' (\'RP POT. 2)

Page generated in 0.1629 seconds