In this thesis we study the behavior of a simple control system based on a delay differential equation with multiple loops of negative feedback. Numerical solutions of the delay differential equation with N delays d/dt x(t) = -x(t) + 1/N POT.N IND.i=1 / POT.n IND.i + x (t- IND.i) POT.n have been investigated as function of its parameters: n, i and i. A simple numerical method for determine the stability regions of the equilibrium points in the parameter space (i, n) is presented. The existence of a doubling period route to chaos in the equation, for N = 3, is characterized by the construction of bifurcation diagram with parameter n. A numerical method that uses the analysis of Poincaré sections of the reconstructed attractor to find aperiodic solutions in the parameter space of the equation is also presented. We apply this method for N = 2 and get evidences for the existence of chaotic solutions as result of a period doubling route to chaos (chaotic solutions for N = 2 in that equation had never been observed). Finally, we study the solutions of a piecewise constant equation that corresponds to the limit case n . / In this thesis we study the behavior of a simple control system based on a delay differential equation with multiple loops of negative feedback. Numerical solutions of the delay differential equation with N delays d/dt x(t) = -x(t) + 1/N POT.N IND.i=1 / POT.n IND.i + x (t- IND.i) POT.n have been investigated as function of its parameters: n, i and i. A simple numerical method for determine the stability regions of the equilibrium points in the parameter space (i, n) is presented. The existence of a doubling period route to chaos in the equation, for N = 3, is characterized by the construction of bifurcation diagram with parameter n. A numerical method that uses the analysis of Poincaré sections of the reconstructed attractor to find aperiodic solutions in the parameter space of the equation is also presented. We apply this method for N = 2 and get evidences for the existence of chaotic solutions as result of a period doubling route to chaos (chaotic solutions for N = 2 in that equation had never been observed). Finally, we study the solutions of a piecewise constant equation that corresponds to the limit case n .
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-28112013-102436 |
Date | 25 May 2000 |
Creators | Júlio César Bastos de Figueiredo |
Contributors | Coraci Pereira Malta, Ibere Luiz Caldas, Sergio Shiguemi Furuie, Jair Koiller, Ronald Dennis Paul Kenneth Clive Ranvaud |
Publisher | Universidade de São Paulo, Física, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0017 seconds