Made available in DSpace on 2014-04-25T02:01:57Z (GMT). No. of bitstreams: 1
000457280-Texto+Completo-0.pdf: 1466158 bytes, checksum: 50a287eaebe41a6c016dd9b8f5bac19d (MD5)
Previous issue date: 2013 / Many tasks in Natural Language Processing involves the provision of a large number of variables, which depend on each other. Structured prediction methods are essentially a combination of classification and modeling based on graphs. They combine the power of classification methods with the ability of this type of modeling to play compactly, multivariate data. The classification methods perform prediction using a large set of features as input. Conditional Random Fields (CRF) is a probabilistic method for predicting structured and has been widely applied in various areas such as natural language processing, including the Named Entity Recognition (NER), computer vision, and bioinformatics. Therefore, this dissertation proposes the application of CRF to NER for the Portuguese Language and to evaluate their performance based on the HAREM corpus. Finally, comparative tests of similar approaches were performed, illustrating the efficiency and competitiveness of the proposed system. / Muitas tarefas de Processamento da Linguagem Natural envolvem a previsão de um grande número de variáveis, as quais dependem umas das outras. Métodos de predição estruturada são, essencialmente, uma combinação de classificação e de modelagem baseada em grafo. Eles unem a competência dos métodos de classificação com a capacidade desse tipo de modelagem de reproduzir, compactamente, dados multivariados. Os métodos de classificação realizam a predição usando um grande conjunto de features como entrada. Conditional Random Fields (CRF) é um método probabilístico de predição estruturada e tem sido amplamente aplicado em diversas áreas, tais como processamento da linguagem natural, incluindo o Reconhecimento de Entidades Nomeadas (REN), visão computacional e bioinformática. Sendo assim, neste trabalho é proposta a aplicação do CRF para o REN em textos da Língua Portuguesa e, sequencialmente, avaliar o seu desempenho com base no corpus do HAREM. Finalmente, testes comparativos da abordagem determinada versus a similar da literatura foram realizados, ilustrando a competitividade e eficácia do sistema proposto.
Identifer | oai:union.ndltd.org:IBICT/urn:repox.ist.utl.pt:RI_PUC_RS:oai:meriva.pucrs.br:10923/5772 |
Date | January 2013 |
Creators | Amaral, Daniela Oliveira Ferreira do |
Contributors | Vieira, Renata de Almeida |
Publisher | Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Repositório Institucional da PUC_RS, instname:Pontifícia Universidade Católica do Rio Grande do Sul, instacron:PUC_RS |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0026 seconds