The struggle to model and solve Combinatorial Optimization Problems (COPs) has challenged the development of new approaches to deal with COPs. In one of the front lines of such approaches, Operational Research (OR) and Constraint Programming (CP) optimization techniques are beginning to converge, despite their very different origins. More specifically, Mixed Integer Linear Programming (MILP) and Constraint Logic Programming (CLP) are at the confluence of the OR and the CP fields. This thesis summarizes and contrasts the essential characteristics of MILP and CLP, and the ways that they can be fruitfully combined. Chapters 1 to 3 sketch the intellectual background for recent efforts at integration and the main results achieved. In addition, these chapters highlight that CLP is known by its reach modeling framework, and the MILP modeling vocabulary is just based on inequalities, which makes the modeling process hard and error-prone. Therefore, a combined CLP-MILP approach suffers from this MILP inherited drawback. In chapter 4, this issue is addressed, and some "high-level" MILP modeling structures based on logical inference paradigms are proposed. These structures help the formulation of MILP models, and can be seen as a contribution towards a unifying modeling framework for a combined CLP-MILP approach. In addition, chapter 5 presents an MILP formulation addressing a combinatorial problem. This problem is focused on issues regarding the oil industry, more specifically, issues involving the scheduling of operational activities in a multi-product pipeline. Chapter 5 demonstrates the applicability of the high-level MILP modeling structures in a real-world scenario. Furthermore, chapter 6 presents a CLP-MILP formulation addressing the same scheduling problem previously exploited. This chapter demonstrates the applicability of the high-level MILP modeling structures in an integrated CLP-MILP modeling framework. The set of simulations conducted indicates that the combined CLP-MILP model was solved to optimality faster than either the MILP model or the CLP model. Thus, the CLP-MILP framework is a promising alternative to deal with the computational burden of this pipeline-scheduling problem. In essence, this thesis considers the integration of CLP and MILP in a modeling standpoint: it conveys the fundamentals of both techniques and the modeling features that help establish a combined CLP-MILP approach. Herein, the concentration is on the building of MILP and CLP-MILP models rather than on the solution process.
Identifer | oai:union.ndltd.org:IBICT/urn:repox.ist.utl.pt:RI_UTFPR:oai:repositorio.utfpr.edu.br:1/86 |
Date | 10 2011 |
Creators | Magatão, Leandro |
Contributors | Arruda, Lúcia Valéria Ramos de |
Publisher | Centro Federal de Educação Tecnológica do Paraná, Curitiba, Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | 1,54 MB |
Source | reponame:Repositório Institucional da UTFPR, instname:Universidade Tecnológica Federal do Paraná, instacron:UTFPR |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.003 seconds