Return to search

Voltage Controlled Non-Volatile Spin State and Conductance Switching of a Molecular Thin Film Heterostructure

Indiana University-Purdue University Indianapolis (IUPUI) / Thermal constraints and the quantum limit will soon put a boundary on the scale of new micro and nano magnetoelectronic devices. This necessitates a push into the limits of harnessable natural phenomena to facilitate a post-Moore’s era of design. Requirements for thermodynamic stability at room temperature, fast (Ghz) switching, and low energy cost narrow the list of candidates. Here we show voltage controllable, room temperature, stable locking of the spin state, and the corresponding conductivity change, when molecular spin crossover thin films are deposited on a ferroelectric substrate. This opens the door to the creation of a non-volatile, room temperature, molecular multiferroic gated voltage controlled device.

Identiferoai:union.ndltd.org:IUPUI/oai:scholarworks.iupui.edu:1805/25956
Date05 1900
CreatorsMosey, Aaron
ContributorsCheng, Ruihua, Joglekar, Yogesh, Decca, Ricardo, Vermuri, Gautum, Csathy, Gabor
Source SetsIndiana University-Purdue University Indianapolis
Languageen_US
Detected LanguageEnglish
TypeThesis
RightsAttribution-NoDerivatives 4.0 International, http://creativecommons.org/licenses/by-nd/4.0/

Page generated in 0.005 seconds