Return to search

Characterization and molecular mapping of drought tolerance in kabuli chickpea (<i>Cicer arietinum L.</i>)

Abstract
Drought is the most common abiotic stress limiting chickpea production in the world. Ninety percent of the worlds chickpea is produced in areas relying upon conserved, receding soil moisture, therefore, crop productivity is largely dependent on efficient utilization of available soil moisture. Because of the variability in drought pattern from year to year, trait based selection could have an advantage over selection on the basis of grain yield alone. Trait based breeding, however, requires trait dissection into components. Successful marker identification would facilitate integration of MAS procedures in breeding programs enabling the pyramiding of favourable alleles.<p>
The genetic map produced in this study was based on a population of recombinant inbred lines of a cross of ILC 588 x ILC 3279 containing 52 SSR markers spanned 335 cM of the chickpea genome at an average density of 6.4 cM. A total of 13 genomic regions were shown to be associated with drought tolerance traits. Some of these genomic regions showed pleiotropic effect on multiple traits. This was also supported by the analysis of phenotypic data where these traits were found to be correlated. For example, early flowering and maturity had a strong association with high grain yield. High grain yield was also associated with better portioning ability between biomass and grain yield, i.e. harvest index. Drought tolerance score (DTS) was associated with various important traits including biomass, early flowering, early maturity.<p>
This study also concluded that chickpea genotypes differed in terms of root length, root length density, root weight density and root length to weight ratio at every 20 cm soil layer up to 100 cm depth in response to water deficits. Consideration of an efficient root system vs. a larger root system is also important, since in this research, large root systems were offset by low harvest index, presumably due to the lack of assimilate available for grain growth. A restricted root system is important in environments like Western Canada, where crop growth termination is usually required prior to fall frost. This study also reported significant associations of stomatal conductance (gs) with each of HI, grain yield under drought, drought susceptibility index and drought tolerance score (DTS). Stomatal conductance can also be used to assess plant stress due to drought. Values of gs less than 250 mmol m-2s-1 during flowering indicated drought stress under greenhouse conditions. A higher degree of plant stress due to drought was shown by increased stomatal closure at midday (gs <150 mmol m-2s-1). The study of 157 RILs under natural drought stress during 2005-07 revealed that the 17 RILs which had high grain yield under drought (Group A), also tended to have higher gs than the 42 RILs that had lower grain yield (Group B). Group A had mean gs values of 390 mmol m-2s-1 during the week before flowering, while Group B had mean gs value of 330 mmol m-2s-1. Stomatal conductance increased at flowering and then sharply decreased later in the reproductive period, particularly in Group B. These findings were also supported by canopy temperature differential measurements as Group A was also able to maintain lower canopy temperature than Group B, indicating the ability of these plants to maintain adequate transpiration and a cooler canopy under drought stress. This research indicated that gs and canopy temperature can be used to assess chickpea drought stress and to screen drought tolerant genotypes. This study identified a QTL on LG7 for gs, QTLs on LG1, LG3 and LG6 associated with canopy temperature differential, as well as QTLs associated with grain yield under drought, HI, DTS, days to flower, days to maturity, reproductive period and plant height. These QTLs identified for traits related to higher chickpea productivity under drought stress could have important implications for accelerating the process of pyramiding of favourable genes into adapted genotypes and on future marker-assisted breeding for drought prone areas.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:SSU.etd-01072009-222705
Date12 January 2009
CreatorsRehman, Aziz Ur
ContributorsMuehlbauer, Fred J., Malhotra, Rajinder S., Coulman, Bruce E., Bueckert, Rosalind A., Bett, Kirstin E., Van Rees, Ken C. J., Warkentin, Tom D.
PublisherUniversity of Saskatchewan
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-01072009-222705/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0022 seconds