• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 1
  • Tagged with
  • 14
  • 14
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biophysically-Based Measurement of Plant Water Status Using Canopy Temperature

Parry, Christopher K. 01 May 2014 (has links)
Precision irrigation scheduling is one approach that can conserve water by supplying crops with the minimum amount of water needed for sufficient vegetative growth and final crop yield. Improved methods for irrigation scheduling are needed for arid regions that rely mainly on irrigation for crop water needs, and humid regions that supplement water received from precipitation with added irrigation. Methods that directly determine plant physiological responses to water availability have potential to be significantly more sensitive and accurate than indirect approaches like soil moisture measurement. Stomatal conductance is a rapid physiological response to leaf water potential. Stomatal conductance in single leaves has long been calculated using biophysical and energy balance principles. This same biophysical approach can be extended to plant communities using: 1) standard meteorological measurements, 2) accurate measurement of average canopy temperature, and 3) knowledge of canopy architecture. Here we use a model designed to separate the energy balance of the soil and plant canopy for the calculation of stomatal conductance (gC) in row crops. This model is modified for application in row crops which differ in their spatial distribution when compared to more uniform crops such as turfgrass or alfalfa. The energy balance model requires measurement or estimation of the soil and canopy temperatures. Various methods can be used to derive these temperatures, i.e., using a composite temperature of the two and either directly measuring or estimating one of the temperatures to derive the other, or directly measuring both component temperatures. This study compares two methods to determine which one is more appropriate in determining canopy temperature for calculation of canopy stomatal conductance for the measurements taken on the fields studied. By using the necessary environmental measurements, and model modifications, gC was continuously determined for 10 corn and 6 cotton crops throughout the Midwest and Southern United States. This gC value was then compared to a calculated reference gC for a well-watered crop. This reference gC represents the stomatal conductance of a well-watered crop experiencing no water stress. The ratio of the calculated and reference gC is an indicator of crop water status, which is called the stomatal conductance ratio (SCR). The SCR increased closer to one (indicating minimal water stress) after each irrigation or significant precipitation event, and steadily declined until the next irrigation event. Significant drought stress occurred in several of the fields. Daily SCR values were weighted to correspond with growth stage sensitivity to drought stress. These weighted values were highly correlated with yield (r2 values up to 0.79). SCR values for cotton were also highly correlated with yield (r2 values up to 0.96). This biophysical approach has the potential to provide a powerful tool for precision irrigation management. Growers can more efficiently apply water to their crops and more accurately determine when to apply irrigation.
2

Optimizing yield with agricultural climate and weather forecasts

Christ, Emily Hall 27 May 2016 (has links)
Weather affects agriculture more than any other variable. For centuries, growers had to depend upon small bits and pieces of local climatological data collected and passed down in almanacs. Over the last 100 years, however, scientists have developed complex Numerical Weather Prediction (NWP) models that are able to forecast weather with increasing accuracy. The objective of this work was to use a probabilistic NWP model (the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System (EPS)) as a component to couple with agricultural decision-making tools and models. First, customized ECMWF EPS forecasts were used as an irrigation scheduling aid for a field trial. Next, the CROPGRO Cotton Model was used to simulate the field experiment as well as an additional irrigation scheduling strategy. Finally, a cotton canopy temperature model was developed and coupled with customized ECMWF EPS forecasts to generate hourly canopy temperature forecasts. These forecasts were used to create a heat stress warning system. Results from the field trial indicate that using precipitation forecasts to schedule irrigation could provide a convenient alternative relative to a standard method. Results from the simulated field trial suggest using precipitation forecasts issued on the day of irrigation could be more efficient than using forecasts issued one to two days prior. Last, results from the heat stress project indicate forecasts were skillful to 10 days, allowing enough time for growers to protect crops if needed. In light of the above, implications for the agricultural community could be significant. Coupled atmospheric-agricultural models have the ability to put weather forecasts in terms producers can understand and can quickly use to make strategic on-farm decisions, therefore, possessing the potential to make a large positive global impact.
3

Determining Genetic Overlap between Staygreen, Leaf Wax and Canopy Temperature Depression in Sorghum RILs

Awika, Henry 2012 May 1900 (has links)
Crops adapted to dry conditions are essential to meet future food, feed and energy needs. Knowledge of interaction between drought tolerance traits and their response to varying water supply conditions would improve selection for yield stability traits. This study focused on determining the association between the QTL regulating the staygreen trait in sorghum with improved canopy temperature depression (CTD) as regulated by total and compositional epicuticular wax content in a recombinant inbred line population derived from BTx642 and RTx7000. Phenotypic data were collected in 3 replicated field trials and 1 greenhouse trial. Plants with higher leaf EWL had cooler canopies. Our results also confirmed that staygreen genotypes are able to maintain cooler canopy than the non-stay-green genotypes under drought and hot conditions. We have suggested that wax might offer a more stable indicator for selection of drought tolerance under a variety of weather conditions. Composite interval mapping identified a total of 28 QTL, fifteen of which had significant overlaps. The overlap between QTL for cuticular leaf wax and QTL for staygreen exhibits a departure from the QTL overlaps for other traits with that of cuticular leaf wax. We have also suggested that under drought stress, the QTL for staygreen may be expressed earlier in time (at anthesis) than had been previously believed.
4

Using remote sensing in soybean breeding: estimating soybean grain yield and soybean cyst nematode populations

Aslan, Hatice January 1900 (has links)
Master of Science / Department of Agronomy / William T. Schapaugh / Remote sensing technologies might serve as indirect selection tools to improve phenotyping to differentiate genotypes for yield in soybean breeding program as well as the assessment of soybean cyst nematode (SCN), Heterodera glycines. The objective of these studies were to: i) investigate potential use of spectral reflectance indices (SRIs) and canopy temperature (CT) as screening tools for soybean grain yield in an elite, segregating population; ii) determine the most appropriate growth stage(s) to measure SRI’s for predicting grain yield; and iii) estimate SCN population density among and within soybean cultivars utilizing canopy spectral reflectance and canopy temperature. Experiment 1 was conducted at four environments (three irrigated and one rain-fed) in Manhattan, KS in 2012 and 2013. Each environment evaluated 48 F4- derived lines. In experiment 2, two SCN resistant cultivars and two susceptible cultivars were grown in three SCN infested field in Northeast KS, in 2012 and 2013. Initial (Pi) and final SCN soil population (Pf) densities were obtained. Analyses of covariance (ANCOVA) revealed that the green normalized vegetation index (GNDVI) was the best predictive index for yield compared to other SRI’s and differentiated genotype performance across a range of reproductive growth stages. CT did not differentiate genotypes across environments. In experiment 2, relationships between GNDVI, reflectance at single wavelengths (675 and 810 nm) and CT with Pf were not consistent across cultivars or environments. Sudden death syndrome (SDS) may have confounded the relationships between remote sensing data and Pf. Therefore, it would be difficult to assess SCN populations using remote sensing based on these results.
5

Characterization and molecular mapping of drought tolerance in kabuli chickpea (<i>Cicer arietinum L.</i>)

Rehman, Aziz Ur 12 January 2009
Abstract Drought is the most common abiotic stress limiting chickpea production in the world. Ninety percent of the worlds chickpea is produced in areas relying upon conserved, receding soil moisture, therefore, crop productivity is largely dependent on efficient utilization of available soil moisture. Because of the variability in drought pattern from year to year, trait based selection could have an advantage over selection on the basis of grain yield alone. Trait based breeding, however, requires trait dissection into components. Successful marker identification would facilitate integration of MAS procedures in breeding programs enabling the pyramiding of favourable alleles.<p> The genetic map produced in this study was based on a population of recombinant inbred lines of a cross of ILC 588 x ILC 3279 containing 52 SSR markers spanned 335 cM of the chickpea genome at an average density of 6.4 cM. A total of 13 genomic regions were shown to be associated with drought tolerance traits. Some of these genomic regions showed pleiotropic effect on multiple traits. This was also supported by the analysis of phenotypic data where these traits were found to be correlated. For example, early flowering and maturity had a strong association with high grain yield. High grain yield was also associated with better portioning ability between biomass and grain yield, i.e. harvest index. Drought tolerance score (DTS) was associated with various important traits including biomass, early flowering, early maturity.<p> This study also concluded that chickpea genotypes differed in terms of root length, root length density, root weight density and root length to weight ratio at every 20 cm soil layer up to 100 cm depth in response to water deficits. Consideration of an efficient root system vs. a larger root system is also important, since in this research, large root systems were offset by low harvest index, presumably due to the lack of assimilate available for grain growth. A restricted root system is important in environments like Western Canada, where crop growth termination is usually required prior to fall frost. This study also reported significant associations of stomatal conductance (gs) with each of HI, grain yield under drought, drought susceptibility index and drought tolerance score (DTS). Stomatal conductance can also be used to assess plant stress due to drought. Values of gs less than 250 mmol m-2s-1 during flowering indicated drought stress under greenhouse conditions. A higher degree of plant stress due to drought was shown by increased stomatal closure at midday (gs <150 mmol m-2s-1). The study of 157 RILs under natural drought stress during 2005-07 revealed that the 17 RILs which had high grain yield under drought (Group A), also tended to have higher gs than the 42 RILs that had lower grain yield (Group B). Group A had mean gs values of 390 mmol m-2s-1 during the week before flowering, while Group B had mean gs value of 330 mmol m-2s-1. Stomatal conductance increased at flowering and then sharply decreased later in the reproductive period, particularly in Group B. These findings were also supported by canopy temperature differential measurements as Group A was also able to maintain lower canopy temperature than Group B, indicating the ability of these plants to maintain adequate transpiration and a cooler canopy under drought stress. This research indicated that gs and canopy temperature can be used to assess chickpea drought stress and to screen drought tolerant genotypes. This study identified a QTL on LG7 for gs, QTLs on LG1, LG3 and LG6 associated with canopy temperature differential, as well as QTLs associated with grain yield under drought, HI, DTS, days to flower, days to maturity, reproductive period and plant height. These QTLs identified for traits related to higher chickpea productivity under drought stress could have important implications for accelerating the process of pyramiding of favourable genes into adapted genotypes and on future marker-assisted breeding for drought prone areas.
6

Characterization and molecular mapping of drought tolerance in kabuli chickpea (<i>Cicer arietinum L.</i>)

Rehman, Aziz Ur 12 January 2009 (has links)
Abstract Drought is the most common abiotic stress limiting chickpea production in the world. Ninety percent of the worlds chickpea is produced in areas relying upon conserved, receding soil moisture, therefore, crop productivity is largely dependent on efficient utilization of available soil moisture. Because of the variability in drought pattern from year to year, trait based selection could have an advantage over selection on the basis of grain yield alone. Trait based breeding, however, requires trait dissection into components. Successful marker identification would facilitate integration of MAS procedures in breeding programs enabling the pyramiding of favourable alleles.<p> The genetic map produced in this study was based on a population of recombinant inbred lines of a cross of ILC 588 x ILC 3279 containing 52 SSR markers spanned 335 cM of the chickpea genome at an average density of 6.4 cM. A total of 13 genomic regions were shown to be associated with drought tolerance traits. Some of these genomic regions showed pleiotropic effect on multiple traits. This was also supported by the analysis of phenotypic data where these traits were found to be correlated. For example, early flowering and maturity had a strong association with high grain yield. High grain yield was also associated with better portioning ability between biomass and grain yield, i.e. harvest index. Drought tolerance score (DTS) was associated with various important traits including biomass, early flowering, early maturity.<p> This study also concluded that chickpea genotypes differed in terms of root length, root length density, root weight density and root length to weight ratio at every 20 cm soil layer up to 100 cm depth in response to water deficits. Consideration of an efficient root system vs. a larger root system is also important, since in this research, large root systems were offset by low harvest index, presumably due to the lack of assimilate available for grain growth. A restricted root system is important in environments like Western Canada, where crop growth termination is usually required prior to fall frost. This study also reported significant associations of stomatal conductance (gs) with each of HI, grain yield under drought, drought susceptibility index and drought tolerance score (DTS). Stomatal conductance can also be used to assess plant stress due to drought. Values of gs less than 250 mmol m-2s-1 during flowering indicated drought stress under greenhouse conditions. A higher degree of plant stress due to drought was shown by increased stomatal closure at midday (gs <150 mmol m-2s-1). The study of 157 RILs under natural drought stress during 2005-07 revealed that the 17 RILs which had high grain yield under drought (Group A), also tended to have higher gs than the 42 RILs that had lower grain yield (Group B). Group A had mean gs values of 390 mmol m-2s-1 during the week before flowering, while Group B had mean gs value of 330 mmol m-2s-1. Stomatal conductance increased at flowering and then sharply decreased later in the reproductive period, particularly in Group B. These findings were also supported by canopy temperature differential measurements as Group A was also able to maintain lower canopy temperature than Group B, indicating the ability of these plants to maintain adequate transpiration and a cooler canopy under drought stress. This research indicated that gs and canopy temperature can be used to assess chickpea drought stress and to screen drought tolerant genotypes. This study identified a QTL on LG7 for gs, QTLs on LG1, LG3 and LG6 associated with canopy temperature differential, as well as QTLs associated with grain yield under drought, HI, DTS, days to flower, days to maturity, reproductive period and plant height. These QTLs identified for traits related to higher chickpea productivity under drought stress could have important implications for accelerating the process of pyramiding of favourable genes into adapted genotypes and on future marker-assisted breeding for drought prone areas.
7

Estimativa de um índice de estresse hídrico para a cultura da cana-de-açúcar com base na temperatura foliar / Estimating of crop water stress index to sugarcane based on the canopy temperature

Trentin, Roberto 24 February 2010 (has links)
Made available in DSpace on 2015-03-26T13:50:02Z (GMT). No. of bitstreams: 1 texto completo.pdf: 1247950 bytes, checksum: 0840510708636790c84fc24445425dfd (MD5) Previous issue date: 2010-02-24 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / The objective of this work was to evaluate the behavior of leaf temperature and transpiration of sugarcane under different matric and meteorological conditions to estimate a crop water stress index (IEHC), which can be applied in irrigation management and estimates of productivity. Because of the need to apply water stress to plants, the experiment was conducted in a greenhouse, belonging to the Agricultural Engineering Department at the Federal University of Viçosa, Viçosa, MG, Brazil. Bud chips of sugarcane (cv. RB867515) were planted on May 6, 2009, in plastic pots with a capacity of 10 liters, which were filled with a commercial substrate. In total, 192 plants were grown for 6 months within the greenhouse, but only a portion was used in measurements. To evaluate the effect of water availability on leaf temperature and transpiration, under different meteorological conditions, three classes of water tension (&#936;) were maintained in the substrate: no water stress (&#936; < 0,5 bar), moderate (4,0 < &#936; < 6,0) and severe (&#936; > 11,0 bars) water stress. A meteorological data acquisition system was implemented for measuring global solar radiation (Rg), air velocity (U), air relative humidity (UR), air temperature (tar) and transpiration of three individual plants randomly chosen. In addition, leaf temperature (tc) was obtained by positioning an infrared thermometer at three different points of each plant used in the transpiration measurements. Based on the measurements obtained without water stress, it was found that the leaf temperature followed fluctuations of solar radiation caused by conditions of partly cloudy sky. In general, tc was lower than tar under no water stress conditions, with maximum difference of 6ºC. The effect of water stress on leaf temperature and transpiration was determined from the suspension of irrigation, by performing three measurement campaigns, initiated at 122, 150 and 181 days after planting, with two days intervals, until the water tension in the substrate reached 15 bars. Under severe water stress conditions, tc became 6.8°C higher than t ar. By using regression analysis, relations were established between the differential tc-tar and the variables global solar radiation (Rg) and air water vapor pressure deficit (DPVar), in order to determine the parameters necessary for obtaining the IEHC. / The objective of this work was to evaluate the behavior of leaf temperature and transpiration of sugarcane under different matric and meteorological conditions to estimate a crop water stress index (IEHC), which can be applied in irrigation management and estimates of productivity. Because of the need to apply water stress to plants, the experiment was conducted in a greenhouse, belonging to the Agricultural Engineering Department at the Federal University of Viçosa, Viçosa, MG, Brazil. Bud chips of sugarcane (cv. RB867515) were planted on May 6, 2009, in plastic pots with a capacity of 10 liters, which were filled with a commercial substrate. In total, 192 plants were grown for 6 months within the greenhouse, but only a portion was used in measurements. To evaluate the effect of water availability on leaf temperature and transpiration, under different meteorological conditions, three classes of water tension (&#936;) were maintained in the substrate: no water stress (&#936; < 0,5 bar), moderate (4,0 < &#936; < 6,0) and severe (&#936; > 11,0 bars) water stress. A meteorological data acquisition system was implemented for measuring global solar radiation (Rg), air velocity (U), air relative humidity (UR), air temperature (tar) and transpiration of three individual plants randomly chosen. In addition, leaf temperature (tc) was obtained by positioning an infrared thermometer at three different points of each plant used in the transpiration measurements. Based on the measurements obtained without water stress, it was found that the leaf temperature followed fluctuations of solar radiation caused by conditions of partly cloudy sky. In general, tc was lower than tar under no water stress conditions, with maximum difference of 6ºC. The effect of water stress on leaf temperature and transpiration was determined from the suspension of irrigation, by performing three measurement campaigns, initiated at 122, 150 and 181 days after planting, with two days intervals, until the water tension in the substrate reached 15 bars. Under severe water stress conditions, tc became 6.8°C higher than t ar. By using regression analysis, relations were established between the differential tc-tar and the variables global solar radiation (Rg) and air water vapor pressure deficit (DPVar), in order to determine the parameters necessary for obtaining the IEHC
8

Evaluation of sorghum genotypes for variation in canopy temperature and drought tolerance

Mutava, Raymond Ngao January 1900 (has links)
Doctor of Philosophy / Department of Agronomy / P.V. Vara Prasad / Sorghum (Sorghum bicolor L. Moench) is the fifth most economically important cereal crop grown worldwide and adapted to a wide range of climatic conditions. Drought stress has been ranked as one of the most significant causes of crop yield loss with its effects on yield and yield components. Conservative water use by plants is one of the strategies that can be used as a drought coping mechanism. The slow wilting trait has been associated with conservative water use and has been found in some sorghum genotypes. The purpose of this study was to use canopy temperature to screen for drought tolerance in sorghum, evaluate water use efficiency for slow wilting sorghum genotypes and determine variability in root morphology and response to drought among sorghum genotypes. Canopy temperature studies were conducted under field conditions using infrared (IR) sensors while water use efficiency and root studies were conducted under greenhouse conditions. Our results showed a distinct separation in canopy temperature among genotypes under field conditions at 2:00 pm to 6:00 pm. Midday canopy temperature depression (CTD) was positively correlated to yield (R2 = 0.19) and harvest index (R2 = 0.11). CTD was also stable for all the genotypes during the period from 1:00 pm to 7:00 pm. There was a negative correlation between CTD and crop water stress index (CWSI) (R2 = 0.34) and a positive one between canopy temperature and CWSI (R2 = 0.50). Evaluation of genotypes for water use efficiency revealed significant variability among sorghum genotypes in the amount of water used (10.48 – 13.52 kg) and transpiration efficiency (TE) (2.64 – 7.11 g kg-1) among genotypes. Slow wilting genotypes were high in TE. Rooting depth increased for some genotypes under drought stress with genotype SC1124 recording the largest increase (180%). Total root length for some genotypes increased by 11 – 113% with genotypes SC224 and SC1019 recording the greatest increase. There was a positive correlation between water used and root length (R2 = 0.21). These results show that there is potential for selection of drought tolerance in sorghum and that genotypes with the slow wilting traits are efficient in water use.
9

Physiological attributes of drought-adaptation and associated molecular markers in the seri/babax hexaploid wheat (Triticum aestivum, L.) population.

Olivares-Villegas, Juan Jose January 2007 (has links)
Agronomic and physiological traits associated with drought adaptation were assessed within the Seri/Babax recombinant inbred line population, derived from parents similar in height and maturity but divergent in their sensitivity to drought. Field trials under different water regimes were conducted over three years in Mexico and under rainfed conditions in Australia. Under drought, canopy temperature (CT) was the single-most drought-adaptive trait contributing to a higher performance (R2= 0.71, p<0.0001), highly heritable (h2= 0.65, p<0.0001) and consistently associated with yield phenotypically (r= -0.75, p<0.0001) and genetically [R(g)= -0.95, p<0.0001]. CT epitomises a mechanism of dehydration avoidance expressed throughout the growing season and across latitudes, which can be utilised as a selection criteria to identify high-yielding wheat genotypes or as an important predictor of yield performance under drought. Early response under drought, suggested by a high association of CT with estimates of biomass at booting (r= -0.44, p<0.0001), leaf chlorophyll (r= -0.22,p<0.0001) and plant height (r= -0.64, p<0.0001), contrast with the small relationships with anthesis and maturity (averaged, r= -0.10, p<0.0001), and with osmotic potential (r= -0.20, p<0.0001). Results suggest that the ability to extract water from the soil under increasing soil water deficit is a major attribute of drought adaptation. Ample genetic variation and significant transgressive segregation under drought suggested a polygenic governance feasible of dissection via molecular markers of CT and associated physiological and agronomic traits. Bulked segregant analysis of selected secondary traits was utilised as an alternative to complete genome mapping, due to a low polymorphism (27%) within the cross and limited chromosomic linkage of loci. The assessment of the extremes of expression in a genotypic subset with a composite molecular database of 127 markers (PCR-based and AFLPs) allowed evaluation of the three hexaploid wheat genomes and coverage of all chromosomic groups, except 3D. One-way analysis of variance indicated significant associations of loci explaining phenotypic variance under drought and rainfed conditions, of 20-70% in Mexico and 20-45% in Australia (F>5.00, p<0.05). Significant loci were established in both latitudes for all physiological and agronomic traits assessed via BSA, with CT being the trait with the most numerous associations (in Mexico, 34 loci; in Australia, 24). Results demonstrate an efficient development of molecular markers associated to physiological traits under specific soil water conditions in Mexico and Australia, and suggest further genomic and transcriptomic studies be conducted for unravelling the complex relationship between drought adaptation and performance under drought. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1284279 / Thesis (Ph.D.) -- University of Adelaide, School of Agriculture, Food and Wine, 2007
10

Remote sensing for site-specific management of biotic and abiotic stress in cotton

Falkenberg, Nyland Ray 30 September 2004 (has links)
This study evaluated the applicability of remote sensing instrumentation for site- specific management of abiotic and biotic stress on cotton grown under a center pivot. Three different irrigation regimes (100%, 75%, and 50% ETc) were imposed on a cotton field to 1) monitor canopy temperatures of cotton with infrared thermometers (IRTs) in order to pinpoint areas of biotic and abiotic stress, 2) compare aerial infrared photography to IRTs mounted on center pivots to correlate areas of biotic and abiotic stress, and 3) relate yield to canopy temperatures. Pivot-mounted IRTs and IR camera were able to differentiate water stress between the irrigation regimes, however, only the IR camera was effectively able to distinguish between biotic (cotton root rot) and abiotic (drought) stress with the assistance of groundtruthing. The 50% ETc regime had significantly higher canopy temperatures, which were reflected in significantly lower lint yields when compared to the 75% and 100% ETc regimes. Deficit irrigation up to 75% ETc had no impact on yield, indicating that water savings were possible without yield depletion.

Page generated in 0.0942 seconds