Return to search

Génération de designs de lentilles avec l'apprentissage profond

Concevoir une lentille, que ce soit pour l'astronomie, la microscopie ou la vision numérique, est un problème de taille visant à trouver un compromis idéal entre la qualité d'image et les différentes contraintes. Par une procédure d'essais-erreurs, une approche typique consiste à sélectionner un point de départ parmi une banque de designs optiques puis à l'optimiser dans l'espoir de satisfaire les présents requis. Cette approche n'exploite pas pleinement la montagne d'information contenue dans les banques de designs : un seul de ces designs contribue au problème à la fois, et seulement s'il répond approximativement aux spécifications et à la configuration désirée. Comment peut-on faire mieux ? L'hypothèse de départ de cette thèse est que l'on peut utiliser l'apprentissage automatique pour extraire et exploiter les caractéristiques communes aux designs de haute qualité que l'on retrouve dans ces banques de données. Concrètement, ces designs conçus par des experts contribuent à l'entraînement d'un modèle d'apprentissage profond qui prend en entrée les spécifications désirées et retourne tous les paramètres nécessaires pour modéliser une lentille. Le contenu de cette thèse, qui détaille le développement de ce cadre d'extrapolation de lentilles, peut se résumer en trois principales contributions. Premièrement, nous définissons et validons un objectif d'entraînement qui compense pour la rareté des données disponibles, soit en intégrant le problème d'optimisation de lentilles directement à la boucle d'entraînement du modèle. Deuxièmement, nous élaborons un modèle dynamique qui acquiert une représentation commune pour toutes les lentilles indépendamment de leur configuration, ce qui nous permet d'extrapoler la banque de designs pour générer des lentilles sur de nouvelles configurations. Troisièmement, nous ajustons le cadre pour refléter le caractère multimodal de la conception afin d'inférer plusieurs lentilles de structures différentes pour n'importe quel ensemble de spécifications et de configuration de lentille. Avec une portée adéquate et un entraînement réussi, ce cadre d'extrapolation de lentilles représente un outil inédit pour la conception optique : une fois le modèle déployé, il permet d'obtenir sur demande des points de départ de haute qualité, variés et sur mesure, et ce, en un temps minimal. / Designing a lens, whether for astronomy, microscopy, or computer vision, is a challenging task that seeks an ideal balance between image quality and various constraints. Through a trial-and-error process, a typical approach consists in selecting a starting point in a lens design database and optimizing it to hopefully satisfy the problem at hand. This approach, however, does not fully harness the wealth of information contained in lens design databases: only one such design contributes to the problem at a time, and only if it approximately meets the desired specifications and configuration. How can we do better? The premise of this work is that machine learning can be used to extract and exploit the common features of the high-quality designs contained in lens design databases. Specifically, the expertly conceived designs that compose these databases are used to guide the training process of a deep learning-based model, which receives the design specifications as input and returns all the parameters needed to fully represent a lens. The content of the thesis, which details the development of this lens design extrapolation framework, can be summarized in three main contributions. First, we define and validate a training objective that compensates for the scarcity of available data, by integrating the lens optimization problem directly into the model training loop. Second, we develop a dynamic model that acquires a common representation for all lenses regardless of their configuration, allowing us to extrapolate the lens database to generate lenses on new, unseen configurations. Third, we extend the framework to capture the multimodal nature of lens design, so that multiple lenses with different structures can be inferred for any given set of specifications and configuration. With a suitable scope and a successful training process, this lens design extrapolation framework offers a new and valuable tool for lens designers: once the model is deployed, only a minimal amount of time is required to obtain varied, high-quality starting points that are tailored to the desired specifications.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/105247
Date15 December 2022
CreatorsCôté, Geoffroi
ContributorsThibault, Simon, Lalonde, Jean-François
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
TypeCOAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xi, 103 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0017 seconds