Modes stationnaires résultant de la discrétisation des équations de Saint-Venant

La modélisation des écoulements en milieux naturels tels que les rivières, les lacs et les océans, fait souvent intervenir un système d'équations aux dérivées partielles dit de Saint-Venant. La plupart des méthodes numériques utilisées pour résoudre les équations de Saint-Venant générent des modes purement numériques en approximant les ondes de type inertie-gravité. Les modes parasites les plus dangereux sont les modes stationnaires. Ils conduisent généralement à des solutions erronées. Ce travail propose une étude des modes stationnaires résultants de la discrétisation des équations de Saint-Venant par des méthodes aux différences finies et d'éléments finis. Nous privilégions une approche de type algèbre linéaire au lieu de celle de type Fourier largement utilisée. Nous introduisons une nouvelle nomenclature des modes parasites qui dépasse largement celle utilisée jusqu'à présent et généralement restreinte aux seuls modes parasites pression. Enfin l'approche de type algèbre linéaire utilisée ici nous permet de tirer quelques conclusions préliminaires quant à la manifestation des modes parasites sur des maillages non structurés.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/17966
Date11 April 2018
CreatorsRostand, Virgile
ContributorsLe Roux, Daniel
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typemémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise
Formatapplication/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0026 seconds