Return to search

Transduction de protéines dans le développement d'un traitement pour la dystrophie musculaire de Duchenne

La dystrophie musculaire de Duchenne (DMD) est une maladie causée par l’absence de dystrophine, qui se manifeste par une dégénérescence progressive des muscles squelettiques et cardiaque. Les garçons atteints ont une espérance de vie d’environ 20 ans. Même si la prise de certains médicaments peut ralentir la progression de la maladie, il n’existe à ce jour aucune thérapie curative. La transplantation autologue de myoblastes génétiquement corrigés peut restaurer l’expression de la dystrophine, mais les myoblastes des patients DMD ont une capacité proliférative très limitée. Leur prolifération nécessite l'immortalisation avec un oncogène viral, un processus augmentant les risques associés à la transplantation de myoblastes. Les protéines fusionnées au domaine de transduction de Tat peuvent transduire les cellules en culture et plusieurs tissus in vivo. La transduction de protéines pourrait s’avérer utile dans le développement de nouvelles approches thérapeutiques. Nos objectifs étaient de tester la capacité des protéines de fusion Tat à transduire les fibres musculaires, de mieux comprendre le mécanisme de transduction, d’optimiser le ciblage efficace des cellules en culture et de développer des outils permettant l’immortalisation transitoire des myoblastes avant leur transplantation. In vivo, nos travaux indiquent que les fibres musculaires résistent à l’internalisation des protéines de fusion Tat, qui se retrouvent en périphérie associées à la matrice extracellulaire. In vitro, la distribution intracellulaire ponctuée, la cinétique d’internalisation, la sensibilité aux basses températures et l’augmentation fonctionnelle exercée par les agents lysosomotropiques révèlent un mécanisme d’endocytose classique. Ces données suggèrent que les protéines de fusion Tat, entrent par la voie endosomale, évitent les lysosomes, et sont ensuite séquestrées en périphérie du noyau. Un trafic intracellulaire inadéquat serait le principal facteur limitant l’efficacité de l’internalisation fonctionnelle des cargos fusionnés au domaine de transduction de Tat. Cette meilleure compréhension du mécanisme d’internalisation des protéines de fusion Tat, nous permit de développer une méthode efficace pour immortaliser de façon réversible les myoblastes d'un patient DMD. En utilisant un protéine de fusion Tat-Cre, nous avons déimmortalisé des myoblastes DMD transformés par l'AgT flanqué de sites LoxP. Cette technique permet de proliférer extensivement les myoblastes DMD, tout en rendant plus sécuritaire la déimmortalisation. / Duchenne muscular dystrophy (DMD) is caused by the absence of dystrophin and leads to progressive weakness in heart and skeletal muscles. Affected boys can only hope to live for 20 years since there is still no effective therapy for DMD. Autologous transplantation of genetically modified myoblasts can restore dystrophin expression, but the rapid death, the specific immune response and limited cellular migration severely limit the efficiency of the treatment. Immortalization, although a risky procedure, is necessary to proliferate myoblasts isolated from dystrophic patients, since by age five; their myogenic cells are practically senescent. Proteins and cargos fused to the Tat protein (HIV) can be internalized in cells and living tissue. The mechanism of Tat internalization is still misunderstood and controversial. Our objectives were to test the susceptibility of muscle fibers to be transduced by Tat fusion proteins, to better understand the mechanism of entry of Tat fusions, to optimize intracellular delivery and to develop techniques allowing the immortalization reversal of myoblasts using Tat-fusion proteins. The low susceptibility of muscle fibers to be transduced and the strong interaction between Tat-fusion proteins and the extracellular matrix surrounding muscle fibers resulted in poor protein delivery. Our work shows that the nuclear localization signal comprised in Tat is not sufficient to confer nuclear delivery to eGFP. The punctuate intracellular distribution, the internalization kinetics, the inhibitory effect of low temperatures and the functional increase exerted by lysosomotropic agents are coherent with a classical endocytosis internalisation mechanism. Our data suggests that Tat-fusion proteins proceed through the endosomal pathway, avoid lysosomes and are then sequestered in the periphery of the nucleus. Hence, improper intracellular trafficking is the main factor limiting the efficiency of Tat-mediated protein internalization. With a better understanding of this internalization mechanism, we were able to optimize the delivery of a Tat-Cre fusion protein to mediate the complete and efficient removal of an oncogene necessary for the proliferation of myoblasts isolated from DMD patients. Therefore this technique should help in the design of a successful treatment based on the autologous transplantation genetically-modified cells.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/18042
Date11 April 2018
CreatorsCaron, Nicolas
ContributorsTremblay, Jacques-P.
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Formatapplication/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0019 seconds