Return to search

Development of ceramic reinforced iron aluminide based composite coatings for wear resistant applications

Les composés intermétalliques Fe₃Al et leurs revêtements composites sont des matériaux structuraux potentiels pour des applications tribologiques. Parmi les composites, ceux obtenus par broyage mécanique à haute énergie possèdent plusieurs avantages, en particulier une fabrication rentable. Le broyage à billes à haute énergie permet également une large gamme de fraction volumique des particules de renforcement. Dans cette recherche, Nous avons préparé des revêtements composites à matrice d'aluminiure de fer, basés sur la composition chimique de Fe₃Al avec des particules de renforcement de TiC et de TiB₂ en utilisant un broyeur à billes à haute énergie et déposé par la technique HVOF (High Velocity Oxy Fuel). L'effet des paramètres de traitement tels que la durée du broyage et le traitement thermique subséquent sur les la matière première destinés à la projection par HVOF a été étudié. Les paramètres de traitement ont joué des rôles importants sur la poudre composite et par la suite sur la microstructure, les propriétés mécaniques et tribologiques des revêtements. Le but de la première phase expérimentale de ce travail était d'étudier l'effet des particules de TiC in situ sur la microstructure, le comportement mécanique et tribologique des revêtements de Fe₃Al déposés par HVOF. Dans cette étape, des poudres composites Fe₃Al / TiC avec différentes quantités de carbure de titane ont été produites par broyage à haute énergie. Un mélange de Fe₃Al-Ti-C a été broyé pendant 6 h suivi d'un traitement thermique à 1000 °C pendant 2 h sous vide poussé. Des revêtements composites d'aluminure de fer renforcés au TiC in situ ont été préparés pour améliorer la dureté Vickers et la résistance à l'usure des intermétalliques de Fe₃Al. Les revêtements composites consistent principalement en une phase de TiC uniformément dispersée dans des lamelles de la matrice de Fe₃Al. Les revêtements composites ont montré une dureté Vickers croissante avec l’augmentation de la quantité de TiC, allant jusqu'à 70 % en moles de TiC. La résistance à l'usure par glissement à sec des revêtements a été augmentée avec l'addition de particules de TiC formées in situ. Les revêtements composites de Fe₃Al déposés par HVOF avec des renforts en TiC de 50 % et 70 % en moles présentaient une excellente résistance à l'usure par glissement. Le mécanisme d'usure dominant de ces revêtements était l'abrasion et l'oxydation. Dans une autre étape de ce travail, des poudres composites de Fe₃Al-TiB₂ avec deux quantités différentes de borure ont été produites par le dépôt par high Velocity Oxy Fuel (HVOF) sur un substrat en acier. Les revêtements composites consistaient principalement en une phase de TiB₂ pré-synthétisée et uniformément dispersée dans des lamelles de la matrice de Fe₃Al. Il a été montré qu'en augmentant la fraction volumique du TiB₂, la dureté Vickers et la résistance à l'usure par glissement des revêtements contre le contre-corps en alumine (6,33 mm de diamètre) étaient augmentées. L'augmentation de la résistance à l'usure était censée être liée à l'amélioration de la dureté, qui à son tour est due à la présence de particules de TiB₂ dans la matrice Fe₃Al. Le taux d'usure de glissement des revêtements a augmenté pour atteindre un maximum lorsque la vitesse de glissement augmente, puis il a diminué avec l'augmentation supplémentaire de la vitesse de glissement. Les analyses chimiques des surfaces usées ont montré que des vitesses de glissement plus élevées entraînent une oxydation plus élevée de la surface, probablement en raison de la température locale plus élevée. Une telle couche d'oxyde semble agir comme une barrière entre deux corps coulissants, diminuant ainsi le taux d'usure. / Fe₃Al intermetallic compounds and their composite coatings are potential structural materials for tribological applications. High-energy ball milled powders possess several advantages, especially cost-effective fabrication and lower cost of reinforcement. High-energy ball mill also allows for a wide range of reinforcement volume fraction. In this research, Iron Aluminide matrix composite coatings based on Fe₃Al chemical composition with TiC and TiB₂ particles were prepared using a high-energy ball mill and deposited via the High Velocity Oxy Fuel (HVOF) technique. The effect of processing parameters such as ball milling duration and subsequent heat treatment soaking time and temperature on the phases of products as a feed stock for the HVOF gun was studied. The processing parameters played important roles on the microstructure, mechanical and tribological properties of the coatings. The aim of the first experimental stage of this work was to study the effect of in-situ TiC particles on microstructure, mechanical and tribological behavior of HVOF deposited Fe₃Al coatings. In this stage Fe₃Al/TiC composite powders with different carbide quantities were produced via high-energy ball milling of Fe₃Al-Ti-C system for 6 h followed by heat treatment at 1000 °C for 2 h under high vacuum. In-situ TiC-reinforced iron aluminide composite coatings were prepared to improve the Vickers hardness and wear resistance of Fe₃Al intermetallics. The composite coatings mainly consist of a TiC phase uniformly dispersed within lamellae of the Fe₃Al matrix. The composite coatings showed increasing Vickers hardness with increasing TiC content up to 70 mol% TiC. The dry sliding wear resistance of coatings was increased with the addition of in-situ formed TiC particles. HVOF deposited Fe₃Al composite coatings with 50 and 70 mol% TiC reinforcements exhibited excellent sliding wear resistance. The dominant wear mechanism in those coatings was abrasion and oxidation. In another stage of this work Fe₃Al-TiB2 composite powders with two different boride quantities were produced by the high Velocity Oxy Fuel (HVOF) spray deposition on a steel substrate. The composite coatings mainly consisted of a TiB₂ phase uniformly dispersed within lamellae of the Fe₃Al matrix. It was shown that by increasing the volume fraction of TiB₂ both the Vickers hardness and sliding wear resistance of the coatings against alumina counterbody (6.33 mm in diameter) were increased. The increase of wear resistance was believed to be related to the hardness enhancement, which, in turn, is due to the presence of TiB₂ particles within the Fe3Al matrix. The sliding wear rate of the coatings increased to reach a maximum as the sliding speed increases, and then it decreased with further increase of the sliding speed. The chemical analyses of the worn surfaces showed that higher sliding speeds result in higher oxidation of the surface, most likely due to the higher local temperature. Such an oxide layer seems to act as a barrier between two sliding bodies, thus decreasing the wear rate.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/35012
Date28 May 2019
CreatorsAmiriyan, Mahdi
ContributorsBlais, Carl
Source SetsUniversité Laval
LanguageEnglish
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xiv, 119 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0348 seconds