Return to search

A microscale approach to optimizing the performance of microbial fuel cells

Une pile microbienne (MFC) est un type de système bioélectrochimique (BES) dans lequel l'oxydation d'un large éventail de molécules organiques produit un courant électrique utilisable à travers un circuit externe. En tant que tel, ces biofilms respirant les anodes (BRA) ont établi les MFC comme une technologie d’énergie propre de nouvelle génération prometteuse, car ils peuvent produire de l’électricité tout en atteignant simultanément une biorestauration. Les MFC offrent également des solutions durables pour les systèmes d'alimentation distribués et le traitement des eaux usées pouvant être exploités localement àla source de la génération de celles-ci, telles que les maisons et les sites industriels, afin de réduire la dépendance aux installations centralisées. Les MFC ont même fait leurs preuves en tant que sources d'alimentation pour les dispositifs implantés autonomes et la détection à distance. Ce travail vise à améliorer l'efficacité des MFC en se concentrant sur les considérations à l'échelle microscopique. Les progrès techniques dans les électrodes microstructurées et la conception de MFC microfluidique sont démontrés. Ces développements ouvrent des possibilités d'optimisation et de recherche fondamentale sur les MFC et la technologie BES associée. Plus précisément, ces travaux démontrent des améliorations basées sur la structure et les matériaux des électrodes et leur intégration dans des canaux microfluidiques protégés contre les gaz présentant une configuration sans membrane. Le résultat est le MFC microfluidique le plus stable jamais décrit dans la littérature, capable de temps de fonctionnement les plus longs sur la plage de débit la plus large. Nous utilisons cette conception d'appareil robuste pour étudier l'effet du débit afin de surmonter les limitations de la disponibilité des nutriments sur les rendements de puissance, les problèmes de dépassement de puissance, ainsi que d'autres obstacles qui ont un impact plus large sur les MFC dans le secteur des énergies alternatives / A microbial fuel cell (MFC) is a type of bioelectrochemical system (BES) in which oxidation of a broad range of organic molecules produces a usable electric current through an external circuit. As such, such anode respiring biofilms (ARBs) have positioned MFCs as a promising next-generation clean energy technology because they can produce electricity while simultaneously achieving bioremediation. MFCs also offer sustainable solutions for distributed power systems and wastewater treatment that can be operated locally at the source of wastewater generation, such as homes and industrial sites, to reduce reliance on centralized facilities. MFCs have even been demonstrated as power sources for autonomous implanted devices and remote sensing. This work seeks to improve the efficiency of MFCs by focusing on the microscale considerations. Technical advancements in microstructured electrodes and microfluidic MFC design are demonstrated. These developments open up possibilities for optimization and fundamental research into MFCs and related BES technology. Specifically, this work demonstrates improvements based on electrode structure and materials and their integration into gas-protected microfluidic channels featuring a membraneless configuration. The result is the most stable microfluidic MFC yet reported in the literature, capable of the longest operating times over the largest range of flow rates. We use this robust device design in study of the effect of flow to overcome the limitations of nutrient availability on power outputs, the so-called power overshoot problems and other obstacles to achieving wider impact of MFCs in the alternative energy sector.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/66966
Date01 February 2021
CreatorsAbbaszadeh Amirdehi, Mehran
ContributorsGreener, Jesse, Miled, Amine
Source SetsUniversité Laval
LanguageEnglish
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xxvi, 185 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0139 seconds