Return to search

Synthesis of mesoporous ZSM-5 zeolites and their application in furan deoxygenation

L'épuisement des réserves de combustibles fossiles et l'augmentation de la demande énergétique ainsi que les problèmes économiques, politiques et environnementaux liés aux combustibles fossiles ont rendu impératif le développement de processus de production de carburants et de produits chimiques renouvelables. La source de carbone durable la plus abondante et la moins chère qui puisse être utilisée comme matière première pour la production de carburants renouvelables et de matières premières chimiques est la biomasse lignocellulosique. Le liquide produit à partir de la pyrolyse de la biomasse est appelé huile de pyrolyse ou bio-huile. Ce liquide contient un mélange complexe de composés résultant de la dégradation d'unités de construction de la biomasse, cellulose, hémicellulose et la lignine. Il a un faible pouvoir calorifique et une teneur élevée en oxygène. Il est acide et contient des particules de charbon solide. Il est donc incompatible avec les carburants actuels à base de pétrole, est thermiquement instable et se dégrade avec le temps. Par conséquent, la valorisation de la bio-huile est inévitable afin de résoudre les problèmes associés aux huiles de pyrolyse et de les utiliser comme carburants et produits chimiques renouvelables. La désoxygénation catalytique est l'une des méthodes prometteuses qui ont été largement étudiées afin d'éliminer l'oxygène atomique et de valoriser ces huiles. Cependant, il y a encore plusieurs problèmes tels qu'une faible sélectivité en aromatiques et oléfines et la formation de coke. Ainsi, le développement de nouveaux catalyseurs et procédés est indispensable pour surmonter les préoccupations mentionnées. Dans la première partie de cette thèse, la synthèse et la caractérisation d'une série d'échantillons de ZSM-5 mésoporeux sont discutées. Le copolymère tribloc Pluronic P123 (EO20PO70EO20) a été utilisé comme matrice de phase méso et la synthèse a été suivie par une méthode d'ajustement du pH permettant d'obtenir un matériau ZSM-5 bien cristallisé avec des méso-canaux de taille 8-10 nm. Les matériaux résultants ont été caractérisés par diffraction des rayons X, microscopie électronique à transmission (TEM), adsorption / désorption d'azote, microscopie électronique à balayage (MEB), résonance magnétique nucléaire à l'état solide (MAS-RMN) et désorption en température programmée de l'ammoniac (TPD). La difficulté de la méthode développée est d'effectuer la croissance de cristaux de zéolithe avec un réseau de pores mésostructuré d'une manière coopérative, en évitant à la fois une séparation de phase entre les unités de surfactant et de zéolithe pendant la cristallisation et la formation d'un matériau mésoporeux amorphe séparé. Dans la deuxième partie, l'effet de la mésoporosité sur la désoxygénation du furane en termes de production d'aromatiques et de désactivation du catalyseur par une étude comparative entre des échantillons de ZSM-5 mésoporeux et microporeux, est étudié. Les catalyseurs mésoporeux ont été préparés selon le procédé décrit dans la première partie avec des rapports Si / Al de 30 et 60. De plus, deux taux différents de WHSV de 5,5 et 11 h⁻¹ ont été utilisés dans les essais. On a trouvé que le taux de conversion du furane initial était plus élevé pour les catalyseurs microporeux, qui se désactivaient cependant rapidement, sur 2 heures de fonctionnement. D'autre part, les catalyseurs mésoporeux ont montré une activité plus régulière avec une légère vitesse de désactivation. La sélectivité globale en aromatiques par rapport aux catalyseurs mésoporeux était plus élevée que par rapport à celle des catalyseurs microporeux. Au chapitre 4, l'effet de l'incorporation de sites actifs métalliques (Zn) sur les taux de conversion du furane, la production d'aromatiques et la formation de coke est discuté. Deux séries de catalyseurs microporeux et mésoporeux avec Si / Al = 30 ont été préparées à différentes charges métalliques de 2 et 5% en poids. Les résultats de la caractérisation par diffraction des rayons X (XRD) n'ont révélé aucun pic supplémentaire par rapport au spectre de la zéolithe, indiquant la bonne dispersion du zinc. Le taux initial de conversion de furane était plus élevé pour les catalyseurs microporeux; il augmentait avec une augmentation de la charge de métal, mais les échantillons mésoporeux se sont rapidement désactivés après 2 heures de fonctionnement. De plus, la sélectivité en aromatiques avec le benzène comme produit principal a été augmentée et la formation de coke a été réduite pour les échantillons mésostructurés. / Depleting fossil fuel reserves and increase of energy demands along with economical, political, and environmental issues related to the fossil fuels have made it imperative to develop processes to produce renewable fuels and chemicals. The most plentiful and cheap sustainable source of carbon that can be used as a feedstock for the production of renewable fuels and commodity chemical feedstocks is lignocellulosic biomass. The liquid produced from the pyrolysis of biomass is designated as pyrolysis oil or bio-oil. This liquid contains a complex mixture of compounds resulting from the degradation of biomass building units, cellulose, hemicellulose, and lignin. It has a low heating value and high oxygen content, is acidic, contains solid char particles, is incompatible with current petroleum-based fuels, is thermally unstable, and degrades with time. Therefore, upgrading of bio-oil is inevitable in order to resolve the issues associated with pyrolysis oils and to use them as renewable fuels and chemicals. Catalytic deoxygenation is one the promising methods which have been extensively studied in order to remove atomic oxygen and valorizing these oils. However, there are still several issues such as low selectivity into aromatics and olefins and coke formation. Thus, developing new catalysts and processes is a must to overcome the mentioned concerns. In the first part of this thesis, the synthesis and characterization of a series of mesoporous ZSM-5 samples are discussed. Pluronic P123 triblock copolymer (EO20PO70EO20) was used as the meso-phase template and synthesis was followed by a pH adjusting method allowing obtaining a well-crystallized ZSM-5 material with meso-channels of size of 8-10 nm. The resulting materials were characterized using X-ray diffraction, transmission electron microscopy (TEM), nitrogen adsorption/desorption, scanning electron microscopy (SEM), solid-state nuclear magnetic resonance (MAS-NMR) and ammonia temperature programmed desorption (TPD) analyses. The significance of the developed method is to perform the growth of zeolite crystals with a mesostructured pore lattice in a cooperative manner, avoiding both a phase separation between the surfactant and zeolite units during crystallization and the formation of a separate amorphous mesoporous material. In the second part, the effect of mesoporosity on deoxygenation of furan in terms of aromatic production and catalyst deactivation through a comparative study between mesoporous and microporous ZSM-5 samples, is studied. The mesoporous catalysts were prepared according to the method described in part one with Si/Al ratios of 30 and 60. Moreover, two different WHSV rates of 5.5 and 11 h⁻¹ were employed in the reaction tests. It was found that the initial furan conversion was higher over the microporous catalysts, which however deactivated rapidly, over 2 hours of time on-stream. On the other hand, the mesoporous catalysts showed a steadier activity with a slight deactivation rate. The overall selectivity to aromatics over the mesoporous catalysts was higher than over the microporous ones. In chapter 4, the effect of the incorporation of zinc metallic active sites on the conversion, aromatic production and coke formation rates is discussed. Two series of microporous and mesoporous catalyst with Si/Al=30 were prepared at different metal loadings of 2 and 5 wt.%. The results of X-ray diffraction (XRD) patterns revealed no extra peaks compared to those of the Zn free materials, indicating the good dispersion of zinc. The initial furan conversion rate was higher over the microporous catalysts, and increased by increasing the metal loading, however the microporous samples, deactivated rapidly after 2 hours of time on-stream. In addition, the aromatic selectivity with benzene as the major product was increased and coke formation was reduced over the mesostructured zeolites.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/70276
Date24 September 2021
CreatorsBiriaei, Rouholamin
ContributorsKaliaguine, S.
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xvii, 124 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0025 seconds