Return to search

Traitement simultané des nitrates et du méthane des sites d'enfouissement à l'aide de bactéries méthanotrophes par biofiltration

Au Québec, l'enfouissement est la technique la plus répandue pour l'élimination des matières résiduelles. Bien qu'elle soit simple et économique, elle entraîne différentes problématiques, dont la production de lixiviats, des liquides très chargés en contaminants, et de gaz d'enfouissement contribuant à l'émission de gaz à effet de serre. Chez Investissement Québec - CRIQ (IQ-CRIQ), la biofiltration méthanotrophe a été étudiée dans les dernières années pour le traitement combiné de ces deux sources de polluants. Si cette technologie a montré une bonne capacité à traiter le méthane (CH₄) présent dans les gaz d'enfouissement, tout en assimilant de l'azote des lixiviats, la capacité du système biologique à résister aux fluctuations saisonnières de température peut être questionnée. L'objectif principal est donc de vérifier si le caractère exothermique de la réaction d'oxydation du CH₄ par les bactéries méthanotrophes permet de maintenir l'activité biologique au sein du biofiltre et donc la capacité épuratoire du CH₄ et de l'azote nitrate (NO₃-) des lixiviats en période hivernale. Pour ce faire, un montage expérimental comprenant quatre biofiltres avec un garnissage organique a été alimenté avec des lixiviats prétraités provenant d'un site d'enfouissement et un mélange synthétique de gaz composé de gaz naturel et d'air. Des isolants en uréthane et une chambre réfrigérée ont été utilisés afin de reproduire les conditions hivernales sur le terrain d'un biofiltre enfoui, soit une température avoisinant les 4 °C. En ce sens, la température d'alimentation liquide a aussi été diminuée à 4 °C pour deux des quatre biofiltres. L'effet d'une charge en CH₄ plus importante sur le traitement a aussi été exploré. Durant les expérimentations qui se sont étendues sur environ 300 jours, les gaz (CH₄, CO₂, N₂O entre autres) et les liquides (NO₃-, NO₂-, NH₄+, pH entre autres) ont été analysés deux à trois fois par semaine et la température interne des réacteurs a été suivie en continu à l'aide de capteurs. Les expérimentations ont permis de montrer que le maintien du traitement était possible même avec une baisse de la température du liquide d'alimentation : une capacité d'élimination de 98 à 112 gCH₄/m³/j et de 2,6 à 3,2 gN-NO₃-/m³/j a été observée pour le biofiltre à température ambiante (environ 21 °C) alimenté avec un lixiviat à 4 °C alors qu'elle a été de 113 gCH₄/m³/j et de 4,4 gN-NO₃-/m³/j pour le biofiltre témoin (température ambiante et d'alimentation liquide à environ 21 °C). Cependant, le biofiltre alimenté avec des lixiviats à 4 °C et placé dans un environnement avec une température ambiante à 4 °C a vu ses capacités à traiter le CH₄ et le NO₃- devenir nulles lors du changement drastique de température. Finalement, le biofiltre alimenté avec une concentration plus élevée en CH₄ n'a pas été en mesure de traiter davantage de contaminants, ce qui laisse croire qu'il pourrait y avoir un débalancement entre le CH₄, les NO₃- et les autres nutriments essentiels ou encore la présence d'inhibiteurs au sein du biofiltre. Une difficulté des gaz à pénétrer le biofilm a aussi pu limiter la capacité d'oxydation et donc l'enlèvement des NO₃-. Bien que des incertitudes persistent, les résultats obtenus montrent bien un potentiel de maintien des capacités épuratoires par les méthanotrophes en période froide d'opération.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/73027
Date04 April 2022
CreatorsDoucet, Julie
ContributorsDubé, Rino, Lessard, Paul
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typemémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise
Format1 ressource en ligne (xiii, 120 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0019 seconds