Return to search

Monte Carlo Solution Of A Radiative Heat Transfer Problem In A 3-d Rectangular Enclosure Containing Absorbing, Emitting, And Anisotropically Scattering Medium

In this study, the application of a Monte Carlo method (MCM) for radiative heat transfer in three-dimensional rectangular enclosures was investigated. The study covers the development of the method from simple surface exchange problems to enclosure problems containing absorbing, emitting and isotropically/anisotropically scattering medium.

The accuracy of the MCM was first evaluated by applying the method to cubical enclosure problems. The first one of the cubical enclosure problems was prediction of radiative heat flux vector in a cubical enclosure containing purely, isotropically and anisotropically scattering medium with non-symmetric boundary conditions. Then, the prediction of radiative heat flux vector in an enclosure containing absorbing, emitting, isotropically and anisotropically scattering medium with symmetric boundary conditions was evaluated. The predicted solutions were compared with the solutions of method of lines solution (MOL) of discrete ordinates method (DOM).

The method was then applied to predict the incident heat fluxes on the freeboard walls of a bubbling fluidized bed combustor, and the solutions were compared with those of MOL of DOM and experimental measurements.

Comparisons show that MCM provides accurate and computationally efficient solutions for modelling of radiative heat transfer in 3-D rectangular enclosures containing absorbing, emitting and scattering media with isotropic and anisotropic scattering properties.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/1059138/index.pdf
Date01 December 2003
CreatorsDemirkaya, Gokmen
ContributorsArinc, Faruk
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0025 seconds