Return to search

Assessment Of Diffusive And Convective Mechanisms During Carbon Dioxide Sequestration Into Deep Saline Aquifers

The analytical and numerical modeling of CO2 sequestration in deep saline aquifers having different properties was studied with diffusion and convection mechanisms. The complete dissolution of CO2 in the aquifer by diffusion took thousands, even millions of years. In diffusion dominated system, an aquifer with 100 m thickness saturated with CO2 after 10,000,000 years. It was much earlier in convective dominant system. In diffusion process, the dissolution of CO2 in aquifer increased with porosity increase / however, in convection dominant process dissolution of CO2 in aquifer decreased with porosity increase. The increase in permeability accelerated the dissolution of CO2 in aquifer significantly, which was due to increasing velocity. The dissolution process in the aquifer realized faster for the aquifers with lower dispersivity. The results of convective dominant mechanism in aquifers with 1md and 10 md permeability values were so close to that of diffusion dominated system. For the aquifer having permeability higher than 10 md, the convection mechanism began to dominate gradually and it became fully convection dominated system for 50 md and higher permeability values. These results were also verified with calculated Rayleigh number and mixing zone lengths. The mixing zone length increased with increase in porosity and time in diffusion dominated system. However, the mixing zone length decreased with increase in porosity and it increased with increase in dispersivity and permeability higher than 10 md in convection dominated system.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12608014/index.pdf
Date01 December 2006
CreatorsOzgur, Emre
ContributorsGumrah, Fevzi
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0018 seconds