Return to search

Robust Discrete Optimization

We propose an approach to address data uncertainty for discrete optimization problems that allows controlling the degree of conservatism of the solution, and is computationally tractable both practically and theoretically. When both the cost coefficients and the data in the constraints of an integer programming problem are subject to uncertainty, we propose a robust integer programming problem of moderately larger size that allows to control the degree of conservatism of the solution in terms of probabilistic bounds on constraint violation. When only the cost coefficients are subject to uncertainty and the problem is a 0 - 1 discrete optimization problem on n variables, then we solve the robust counterpart by solving n + 1 instances of the original problem. Thus, the robust counterpart of a polynomially solvable 0 -1 discrete optimization problem remains polynomially solvable. Moreover, we show that the robust counterpart of an NP-hard α-approximable 0 - 1 discrete optimization problem remains α-approximal. / Singapore-MIT Alliance (SMA)

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/3715
Date01 1900
CreatorsBertsimas, Dimitris J., Sim, Melvyn
Source SetsM.I.T. Theses and Dissertation
Languageen_US
Detected LanguageEnglish
TypeArticle
Format462427 bytes, application/pdf
RelationHigh Performance Computation for Engineered Systems (HPCES);

Page generated in 0.0025 seconds