1 |
Stormwater Monitoring: Evaluation of Uncertainty due to Inadequate Temporal Sampling and Applications for Engineering EducationMcDonald, Walter Miller 01 July 2016 (has links)
The world is faced with uncertain and dramatic changes in water movement, availability, and quality are due to human-induced stressors such as population growth, climatic variability, and land use changes. At the apex of this problem is the need to understand and predict the complex forces that control the movement and life-cycle of water, a critical component of which is stormwater runoff. Success in addressing these issues is also dependent upon educating hydrology professionals who understand the physical processes that produce stormflow and the effects that these stressors have on stormwater runoff and water quality. This dissertation addresses these challenges through methodologies that can improve the way we measure stormflow and educate future hydrology professionals.
A methodology is presented to (i) evaluate the uncertainty due to inadequate temporal sampling of stormflow data, and (ii) develop equations using regional regression analysis that can be used to select a stormflow sampling frequency of a watershed. A case study demonstrates how the proposed methodology has been applied to 25 stream gages with watershed areas ranging between 30 and 11,865 km2 within the Valley and Ridge geomorphologic region of Virginia. Results indicate that autocorrelation of stormflow hydrographs, drainage area of the catchment, and time of concentration are statistically significant predictor variables in single-variable regional regression analysis for estimating the site-specific stormflow sampling frequency under a specific magnitude of uncertainty.
Methods and resources are also presented that utilize high-frequency continuous stormwater runoff data in hydrology education to improve student learning. Data from a real-time continuous watershed monitoring station (flow, water quality, and weather) were integrated into a senior level hydrology course at Virginia Tech (30 students) and two freshman level introductory engineering courses at Virginia Western Community College (70 students) over a period of 3 years using student-centered modules. The goal was to assess student learning through active and collaborative learning modules that provide students with field and virtual laboratory experiences. A mixed methods assessment revealed that student learning improved through modules that incorporated watershed data, and that students most valued working with real-world data and the ability to observe real-time environmental conditions. / Ph. D.
|
2 |
Robust Discrete OptimizationBertsimas, Dimitris J., Sim, Melvyn 01 1900 (has links)
We propose an approach to address data uncertainty for discrete optimization problems that allows controlling the degree of conservatism of the solution, and is computationally tractable both practically and theoretically. When both the cost coefficients and the data in the constraints of an integer programming problem are subject to uncertainty, we propose a robust integer programming problem of moderately larger size that allows to control the degree of conservatism of the solution in terms of probabilistic bounds on constraint violation. When only the cost coefficients are subject to uncertainty and the problem is a 0 - 1 discrete optimization problem on n variables, then we solve the robust counterpart by solving n + 1 instances of the original problem. Thus, the robust counterpart of a polynomially solvable 0 -1 discrete optimization problem remains polynomially solvable. Moreover, we show that the robust counterpart of an NP-hard α-approximable 0 - 1 discrete optimization problem remains α-approximal. / Singapore-MIT Alliance (SMA)
|
3 |
Positional Uncertainty Analysis Using Data Uncertainy Engine A Case Study On Agricultural Land ParcelsUrganci, Ilksen 01 December 2009 (has links) (PDF)
Most of spatial data extraction and updating procedures require digitization of geographical entities from satellite imagery. During digitization, errors are introduced by factors like instrument deficiencies or user errors. In this study positional uncertainty of geographical objects, digitized from high resolution Quickbird satellite imagery, is assessed using Data Uncertainty Engine (DUE). It is a software tool for assessing uncertainties in environmental data / and generating realisations of uncertain data for use in uncertainty propagation analyses. A case study area in Kocaeli, Turkey that mostly includes agricultural land parcels is selected in order to evaluate positional uncertainty and obtain uncertainty boundaries for manually digitized fields. Geostatistical evaluation of discrepancy between reference data and digitized polygons are undertaken to analyse auto and cross correlation structures of errors. This process is utilized in order to estimate error model parameters which are employed in defining an uncertainty model within DUE. Error model parameters obtained from training data, are used to generate simulations for test data. Realisations of data derived via Monte Carlo Simulation using DUE, are evaluated to generate uncertainty boundaries for each object guiding user for further analyses with pre-defined information related to the accuracy of spatial entities. It is also aimed to assess area uncertainties affected by the position of spatial entities. For all different correlation structures and object models, weighted average positional error for this study is between 2.66 to 2.91 meters. At the end of uncertainty analysis, deformable object model produced the smallest uncertainty bandwidth by modelling cross correlation.
|
4 |
Robust solutions to storage loading problems under uncertaintyLe, Xuan Thanh 17 February 2017 (has links)
In this thesis we study some storage loading problems motivated from several practical contexts, under different types of uncertainty on the items’ data. To have robust stacking solutions against the data uncertainty, we apply the concepts of strict and adjustable robustness. We first give complexity results for various storage loading problems with stacking constraints, and point out some interesting settings in which the adjustable robust problems can be solved more efficiently than the strict ones. Then we propose different solution algorithms for the robust storage loading problems, and figure out which algorithm performs best for which data setting. We also propose a robust optimization framework dealing with storage loading problems under stochastic uncertainty. In this framework, we offer several rule-based ways of scenario generation to derive different uncertainty sets, and analyze the trade-off between cost and robustness of the robust stacking solutions. Additionally, we introduce a novel approach in dealing with stability issues of stacking configurations. Our key idea is to impose a limited payload on each item depending on its weight. We then study a storage loading problem with the interaction of stacking and payload constraints, as well as uncertainty on the weights of items, and propose different solution approaches for the robust problems.
|
5 |
Membership Functions for a Fuzzy Relational Database: A Comparison of the Direct Rating and New Random Proportional MethodsSanghi, Shweta 01 January 2006 (has links)
Fuzzy relational databases deal with imprecise data or fuzzy information in a relational database. The purpose of this fuzzy database implementation is to retrieve images by using fuzzy queries whose common-language descriptions are defined by the consensus of a particular user community. The fuzzy set, which is presentation of fuzzy attribute values of the images, is determined through membership function. This paper compares two methods of constructing membership functions, the Direct Rating and New Random Proportional, to determine which method gives maximum users satisfaction with minimum feedback from the community. The statistical analysis of results suggests the use of Direct Rating method. Moreover, the analysis shows that the performance of the New Random Proportional method can be improved with the inclusion of a "Not" modifier. This paper also identifies and analyzes issues that are raised by different versions of the database system.
|
6 |
A Resource-Oriented Architecture for Integration and Exploitation of Linked Data / Conception d'une architecture orientée services pour l'intégration et l'exploitation de données liéesDe Vettor, Pierre 29 September 2016 (has links)
Cette thèse porte sur l'intégration de données brutes provenant de sources hétérogènes sur le Web. L'objectif global est de fournir une architecture générique et modulable capable de combiner, de façon sémantique et intelligente, ces données hétérogènes dans le but de les rendre réutilisables. Ce travail est motivé par un scenario réel de l'entreprise Audience Labs permettant une mise à l'échelle de cette architecture. Dans ce rapport, nous proposons de nouveaux modèles et techniques permettant d'adapter le processus de combinaison et d'intégration à la diversité des sources de données impliquées. Les problématiques sont une gestion transparente et dynamique des sources de données, passage à l'échelle et responsivité par rapport au nombre de sources, adaptabilité au caractéristiques de sources, et finalement, consistance des données produites(données cohérentes, sans erreurs ni doublons). Pour répondre à ces problématiques, nous proposons un méta-modèle pour représenter ces sources selon leurs caractéristiques, liées à l'accès (URI) ou à l'extraction (format) des données, mais aussi au capacités physiques des sources (latence, volume). En s'appuyant sur cette formalisation, nous proposent différentes stratégies d'accès aux données, afin d'adapter les traitements aux spécificités des sources. En se basant sur ces modèles et stratégies, nous proposons une architecture orientée ressource, ou tout les composants sont accessibles par HTTP via leurs URI. En se basant sur les caractéristiques des sources, sont générés des workflows d'exécution spécifiques et adapté, permettant d'orchestrer les différentes taches du processus d'intégration de façon optimale, en donnant différentes priorités à chacune des tâches. Ainsi, les temps de traitements sont diminuées, ainsi que les volumes des données échangées. Afin d'améliorer la qualité des données produites par notre approches, l'accent est mis sur l'incertitude qui peut apparaître dans les données sur le Web. Nous proposons un modèle, permettant de représenter cette incertitude, au travers du concept de ressource Web incertaines, basé sur un modèle probabiliste ou chaque ressource peut avoir plusieurs représentation possibles, avec une certaine probabilité. Cette approche sera à l'origine d'une nouvelle optimisation de l'architecture pour permettre de prendre en compte l'incertitude pendant la combinaison des données / In this thesis, we focus on data integration of raw data coming from heterogeneous and multi-origin data sources on the Web. The global objective is to provide a generic and adaptive architecture able to analyze and combine this heterogeneous, informal, and sometimes meaningless data into a coherent smart data set. We define smart data as significant, semantically explicit data, ready to be used to fulfill the stakeholders' objective. This work is motivated by a live scenario from the French {\em Audience Labs} company. In this report, we propose new models and techniques to adapt the combination and integration process to the diversity of data sources. We focus on transparency and dynamicity in data source management, scalability and responsivity according to the number of data sources, adaptability to data source characteristics, and finally consistency of produced data (coherent data, without errors and duplicates). In order to address these challenges, we first propose a meta-models in order to represent the variety of data source characteristics, related to access (URI, authentication) extraction (request format), or physical characteristics (volume, latency). By relying on this coherent formalization of data sources, we define different data access strategies in order to adapt access and processing to data source capabilities. With help form these models and strategies, we propose a distributed resource oriented software architecture, where each component is freely accessible through REST via its URI. The orchestration of the different tasks of the integration process can be done in an optimized way, regarding data source and data characteristics. This data allows us to generate an adapted workflow, where tasks are prioritized amongst other in order to fasten the process, and by limiting the quantity of data transfered. In order to improve the data quality of our approach, we then focus on the data uncertainty that could appear in a Web context, and propose a model to represent uncertainty in a Web context. We introduce the concept of Web resource, based on a probabilistic model where each resource can have different possible representations, each with a probability. This approach will be the basis of a new architecture optimization allowing to take uncertainty into account during our combination process
|
7 |
Sustainable Convergence of Electricity and Transport Sectors in the Context of Integrated Energy SystemsHajimiragha, Amirhossein January 2010 (has links)
Transportation is one of the sectors that directly touches the major challenges that energy utilities are faced with, namely, the significant increase in energy demand and environmental issues. In view of these concerns and the problems with the supply of oil, the pursuit of alternative fuels for meeting the future energy demand of the transport sector has gained much attention. The future of transportation is believed to be based on electric drives in fuel cell vehicles (FCVs) or plug-in electric vehicles (PEVs). There are compelling reasons for this to happen: the efficiency of electric drive is at least three times greater than that of combustion processes and these vehicles produce almost zero emissions, which can help relieve many environmental concerns. The future of PEVs is even more promising because of the availability of electricity infrastructure. Furthermore, governments around the world are showing interest in this technology by investing billions of dollars in battery technology and supportive incentive programs for the customers to buy these vehicles. In view of all these considerations, power systems specialists must be prepared for the possible impacts of these new types of loads on the system and plan for the optimal transition to these new types of vehicles by considering the electricity grid constraints. Electricity infrastructure is designed to meet the highest expected demand, which only occurs a few hundred hours per year. For the remaining time, in particular during off-peak hours, the system is underutilized and could generate and deliver a substantial amount of energy to other sectors such as transport by generating hydrogen for FCVs or charging the batteries in PEVs. This thesis investigates the technical and economic feasibility of improving the utilization of electricity system during off-peak hours through alternative-fuel vehicles (AFVs) and develops optimization planning models for the transition to these types of vehicles. These planning models are based on decomposing the region under study into different zones, where the main power generation and electricity load centers are located, and considering the major transmission corridors among them. An emission cost model of generation is first developed to account for the environmental impacts of the extra load on the electricity grid due to the introduction of AFVs. This is followed by developing a hydrogen transportation model and, consequently, a comprehensive optimization model for transition to FCVs in the context of an integrated electricity and hydrogen system. This model can determine the optimal size of the hydrogen production plants to be developed in different zones in each year, optimal hydrogen transportation routes and ultimately bring about hydrogen economy penetration. This model is also extended to account for optimal transition to plug-in hybrid electric vehicles (PHEVs). Different aspects of the proposed transition models are discussed on a developed 3-zone test system. The practical application of the proposed models is demonstrated by applying them to Ontario, Canada, with the purpose of finding the maximum potential penetrations of AFVs into Ontario’s transport sector by 2025, without jeopardizing the reliability of the grid or developing new infrastructure. Applying the models to this real-case problem requires the development of models for Ontario’s transmission network, generation capacity and base-load demand during the planning study. Thus, a zone-based model for Ontario’s transmission network is developed relying on major 500 and 230 kV transmission corridors. Also, based on Ontario’s Integrated Power System Plan (IPSP) and a variety of information provided by the Ontario Power Authority (OPA) and Ontario’s Independent Electricity System Operator (IESO), a zonal pattern of base-load generation capacity is proposed. The optimization models developed in this study involve many parameters that must be estimated; however, estimation errors may substantially influence the optimal solution. In order to resolve this problem, this thesis proposes the application of robust optimization for planning the transition to AFVs. Thus, a comprehensive sensitivity analysis using Monte Carlo simulation is performed to find the impact of estimation errors in the parameters of the planning models; the results of this study reveals the most influential parameters on the optimal solution. Having a knowledge of the most affecting parameters, a new robust optimization approach is applied to develop robust counterpart problems for planning models. These models address the shortcoming of the classical robust optimization approach where robustness is ensured at the cost of significantly losing optimality. The results of the robust models demonstrate that with a reasonable trade-off between optimality and conservatism, at least 170,000 FCVs and 900,000 PHEVs with 30 km all-electric range (AER) can be supported by Ontario’s grid by 2025 without any additional grid investments.
|
8 |
Sustainable Convergence of Electricity and Transport Sectors in the Context of Integrated Energy SystemsHajimiragha, Amirhossein January 2010 (has links)
Transportation is one of the sectors that directly touches the major challenges that energy utilities are faced with, namely, the significant increase in energy demand and environmental issues. In view of these concerns and the problems with the supply of oil, the pursuit of alternative fuels for meeting the future energy demand of the transport sector has gained much attention. The future of transportation is believed to be based on electric drives in fuel cell vehicles (FCVs) or plug-in electric vehicles (PEVs). There are compelling reasons for this to happen: the efficiency of electric drive is at least three times greater than that of combustion processes and these vehicles produce almost zero emissions, which can help relieve many environmental concerns. The future of PEVs is even more promising because of the availability of electricity infrastructure. Furthermore, governments around the world are showing interest in this technology by investing billions of dollars in battery technology and supportive incentive programs for the customers to buy these vehicles. In view of all these considerations, power systems specialists must be prepared for the possible impacts of these new types of loads on the system and plan for the optimal transition to these new types of vehicles by considering the electricity grid constraints. Electricity infrastructure is designed to meet the highest expected demand, which only occurs a few hundred hours per year. For the remaining time, in particular during off-peak hours, the system is underutilized and could generate and deliver a substantial amount of energy to other sectors such as transport by generating hydrogen for FCVs or charging the batteries in PEVs. This thesis investigates the technical and economic feasibility of improving the utilization of electricity system during off-peak hours through alternative-fuel vehicles (AFVs) and develops optimization planning models for the transition to these types of vehicles. These planning models are based on decomposing the region under study into different zones, where the main power generation and electricity load centers are located, and considering the major transmission corridors among them. An emission cost model of generation is first developed to account for the environmental impacts of the extra load on the electricity grid due to the introduction of AFVs. This is followed by developing a hydrogen transportation model and, consequently, a comprehensive optimization model for transition to FCVs in the context of an integrated electricity and hydrogen system. This model can determine the optimal size of the hydrogen production plants to be developed in different zones in each year, optimal hydrogen transportation routes and ultimately bring about hydrogen economy penetration. This model is also extended to account for optimal transition to plug-in hybrid electric vehicles (PHEVs). Different aspects of the proposed transition models are discussed on a developed 3-zone test system. The practical application of the proposed models is demonstrated by applying them to Ontario, Canada, with the purpose of finding the maximum potential penetrations of AFVs into Ontario’s transport sector by 2025, without jeopardizing the reliability of the grid or developing new infrastructure. Applying the models to this real-case problem requires the development of models for Ontario’s transmission network, generation capacity and base-load demand during the planning study. Thus, a zone-based model for Ontario’s transmission network is developed relying on major 500 and 230 kV transmission corridors. Also, based on Ontario’s Integrated Power System Plan (IPSP) and a variety of information provided by the Ontario Power Authority (OPA) and Ontario’s Independent Electricity System Operator (IESO), a zonal pattern of base-load generation capacity is proposed. The optimization models developed in this study involve many parameters that must be estimated; however, estimation errors may substantially influence the optimal solution. In order to resolve this problem, this thesis proposes the application of robust optimization for planning the transition to AFVs. Thus, a comprehensive sensitivity analysis using Monte Carlo simulation is performed to find the impact of estimation errors in the parameters of the planning models; the results of this study reveals the most influential parameters on the optimal solution. Having a knowledge of the most affecting parameters, a new robust optimization approach is applied to develop robust counterpart problems for planning models. These models address the shortcoming of the classical robust optimization approach where robustness is ensured at the cost of significantly losing optimality. The results of the robust models demonstrate that with a reasonable trade-off between optimality and conservatism, at least 170,000 FCVs and 900,000 PHEVs with 30 km all-electric range (AER) can be supported by Ontario’s grid by 2025 without any additional grid investments.
|
9 |
An Intelligent Fuzzy Object-oriented Database Framework For Video Database ApplicationsOzgur, Nezihe Burcu 01 October 2007 (has links) (PDF)
Video database applications call for flexible and powerful modeling and querying facilities, which require an integration or interaction between database and knowledge base technologies. It is also necessary for many real life video database applications to incorporate uncertainty, which naturally occurs due to the complex and subjective semantic content of video data. In this thesis study, firstly, a fuzzy conceptual data model is introduced to represent the semantic content of video data. UML (Unified Modeling Language) is utilized and extended to represent uncertain information along with video specific properties at the conceptual level. Secondly, an intelligent fuzzy object-oriented database framework is presented for video database applications. The introduced fuzzy conceptual model is mapped to the presented framework, which is an adaptation of the previously proposed IFOOD architecture. The framework provides modeling and querying of complex and rich semantic content and knowledge of video data including uncertainty. Moreover, it allows (fuzzy) semantic, temporal, (fuzzy) spatial, hierarchical, regional and trajectory queries, based on the video data model. We think that the presented conceptual data model and framework can be adapted to any application domain related to video databases.
|
10 |
Robust Conic Quadratic Programming Applied To Quality Improvement -a Robustification Of CmarsOzmen, Ayse 01 October 2010 (has links) (PDF)
In this thesis, we study and use Conic Quadratic Programming (CQP) for purposes of operational research, especially, for quality improvement in manufacturing. In previous works, the importance and benefit of CQP in this area became already demonstrated. There, the complexity of the regression method Multivariate Adaptive Regression Spline (MARS), which especially means sensitivity with respect to noise in the data, became penalized in the form of so-called Tikhonov regularization, which became expressed and studied as a CQP problem. This was leading to the new method CMARS / it is more model-based and employs continuous, actually, well-structured convex optimization which enables the use of Interior Point Methods and their codes such as MOSEK. In this study, we are generalizing the regression problem by including uncertainty in the model, especially, in the input data, too.
CMARS, recently developed as an alternative method to MARS, is powerful in overcoming complex and heterogeneous data. However, for MARS and CMARS method, data are assumed to contain fixed variables. In fact, data include noise in both output and input variables. Consequently, optimization problem&rsquo / s solutions can show a remarkable sensitivity to perturbations in the parameters of the problem. In this study, we include the existence of uncertainty in the future scenarios into CMARS and robustify it with robust optimization which is dealt with data uncertainty. That kind of optimization was introduced by Aharon Ben-Tal and Arkadi Nemirovski, and used by Laurent El Ghaoui in the area of data mining. It incorporates various kinds of noise and perturbations into the programming problem. This robustification of CQP with robust optimization is compared with previous contributions that based on Tikhonov regularization, and with the traditional MARS method.
|
Page generated in 0.0774 seconds