Return to search

Modified Selection Mechanisms Designed to Help Evolution Strategies Cope with Noisy Response Surfaces

With the rise in the application of evolution strategies for simulation optimization, a better understanding of how these algorithms are affected by the stochastic output produced by simulation models is needed. At very high levels of stochastic variance in the output, evolution strategies in their standard form experience difficulty locating the optimum. The degradation of the performance of evolution strategies in the presence of very high levels of variation can be attributed to the decrease in the proportion of correctly selected solutions as parents from which offspring solutions are generated. The proportion of solutions correctly selected as parents can be increased by conducting additional replications for each solution. However, experimental evaluation suggests that a very high proportion of correctly selected solutions as parents is not required. A proportion of correctly selected solutions of around 0.75 seems sufficient for evolution strategies to perform adequately. Integrating statistical techniques into the algorithm?s selection process does help evolution strategies cope with high levels of noise. There are four categories of techniques: statistical ranking and selection techniques, multiple comparison procedures, clustering techniques, and other techniques. Experimental comparison of indifference zone selection procedure by Dudewicz and Dalal (1975), sequential procedure by Kim and Nelson (2001), Tukey?s Procedure, clustering procedure by Calsinki and Corsten (1985), and Scheffe?s procedure (1985) under similar conditions suggests that the sequential ranking and selection procedure by Kim and Nelson (2001) helps evolution strategies cope with noise using the smallest number of replications. However, all of the techniques required a rather large number of replications, which suggests that better methods are needed. Experimental results also indicate that a statistical procedure is especially required during the later generations when solutions are spaced closely together in the search space (response surface).

Identiferoai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-4171
Date02 August 2003
CreatorsGadiraju, Sriphani Raju
PublisherScholars Junction
Source SetsMississippi State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.0022 seconds