Return to search

Impact of altered polyamine metabolism on Streptococcus pneumoniae capsule

This dissertation is a compilation of published works and a manuscript that seek to understand the possible role of polyamines in the regulation of capsule in Streptococcus pneumoniae (Spn, pneumococcus). Spn remains a major health risk worldwide while the capsule is widely recognized as the principal virulence factor. Polyamines on the other hand are small hydrocarbon molecules known to regulate a number of cellular processes in bacteria. This work investigates the impact of deletion of polyamine biosynthesis gene, SP_0916 (cadA, lysine decarboxylase at the time of first and second publication), on protein expression and the capsule biosynthesis of virulent pneumococcal serotype 4 (TIGR4). We identify loss of capsular polysaccharide (CPS) in the deletion strain and based on proteomics results, we hypothesized that a shift in metabolism that favors the pentose phosphate pathway (PPP) over glycolytic pathway, that could reduce the availability of precursors for CPS had occurred. Comparison of transcriptomic and untargeted metabolomics profile of ∆SP_0916 with TIGR4 shows impaired glycolysis and Leloir pathways that provide CPS precursors, in the mutant strain. Furthermore, gene expression changes indicate possible reduction of common polyamines (cadaverine, putrescine, spermidine and spermine). Targeted metabolomics analysis confirmed reduced levels of polyamines in SP_0916. However, the result suggests that SP_0916 encodes an arginine decarboxylase, contrary to its existing annotation as a lysine decarboxylase in many bioinformatics databases. Biochemical characterization of the purified protein encoded by SP_0916 confirms that it is indeed catalyzes arginine decarboxylation, and exogenous supplementation of agmatine, the product of the reaction, successfully restores capsule biosynthesis. This study fixes an error in annotation of the TIGR4 genome and further establishes the essentiality of agmatine, a product of arginine decarboxylation as the key polyamine molecule modulating pneumococcal capsule. We later compared the impact of deletion of polyamine synthesis by gene deletion (ΔSP_0916) with chemical inhibition of synthesis using α- difluoromethylornithine (DFMO), in multiple pneumococcal serotypes. Results of this dissertation confirmed that pneumococcal pathways impacted by the disruption of polyamine biosynthesis either by gene deletion or chemical intervention are conserved and could regulate capsule synthesis.

Identiferoai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-6078
Date30 April 2021
CreatorsAyoola, Moses Babatunde
PublisherScholars Junction
Source SetsMississippi State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.0023 seconds