Return to search

Single molecule investigating Rhodamine B dilute solution at confocal and TIR configurations

The motion of dye molecules in the solution is highly influenced by the Brownian motion caused by the stochastic collisions with the solvents, and it results the fluorescence intensity fluctuation. The thesis study the fluorescence intensity fluctuation of dilute dye molecule (Rhodamine B) in methanol solution ( - ), under confocal and total internal reflection (TIR) microscopy configurations.
Five parameters are used to probe the fluorescence characteristics: (1) the difference between confocal and the TIR configurations. The configuration influences the laser focusing area and consequently the intensity distribution. The effective focusing area in confocal configuration is an ellipsoid shape, while that of TIR configuration is a disk shape around the interface with depth 100-200 nm. It results the TIR configuration less background and higher concentration capability. (2) concentration. We control the concentration from much less than one molecule to more than one molecule in the effective focusing area, and we observe the change of burst intensity distribution. (3) the focus position. By changing the focusing position, we study the effective focusing region changes. (4) excited intensity, and (5) fluorescence correlation spectroscopy (FCS).
Our results indicate that TIR configuration exhibits lower background, and is suitable to higher concentration solution. In addition, when the dye concentration in the focusing area is much less than 1, the FCS amplitude is no longer follow 1/N, but rather be proportional to N, where N is the concentration.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0118107-150723
Date18 January 2007
CreatorsWei, Yi-chung
ContributorsJui-hung Hsu, Chih-ching Huang, Shih-jung Bai
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0118107-150723
Rightsnot_available, Copyright information available at source archive

Page generated in 0.0022 seconds