• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 25
  • 7
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 89
  • 25
  • 23
  • 22
  • 17
  • 14
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A study of water circulation in Monterey harbor using rhodamine B dye,

Breidenstein, John F. Thomas, David M. January 1965 (has links)
Thesis (M.S.)--U.S. Naval Postgraduate School, 1965. / Bibliography: leaves 76-80.
2

Investigation of interfaces by second harmonic ellipsometry

Alexander, Alasdair Kiernan January 2000 (has links)
No description available.
3

Produção fotocatalítica de hidrogênio a partir de soluções de etanol em água

Espindola, Juliana da Silveira January 2010 (has links)
O presente trabalho tem o objetivo de investigar a obtenção de hidrogênio a partir de soluções de etanol em água, por fotocatálise, usando-se catalisadores a base de óxido de zinco (ZnO). Nestes estudos foram empregados cinco catalisadores ZnO, sendo um comercial e os demais preparados através de diferentes metodologias encontradas na literatura. Os catalisadores foram caracterizados por área BET, DRX e FRX, e a investigação preliminar da atividade destes catalisadores foi feita através de ensaios de degradação fotocatalítica de rodamina B em reator slurry em batelada, onde foram avaliadas a taxa de reação e a remoção de corante. Os ensaios para a produção fotocatalítica de hidrogênio foram realizados em um reator de quartzo, operado em batelada com catalisador em suspensão e atmosfera inerte de nitrogênio. A solução foi irradiada por uma série de seis lâmpadas compactas de luz negra. Ao longo dos testes, amostras das fases líquida e gasosa foram coletadas e analisadas para identificação do consumo de etanol e produção de hidrogênio usando-se, respectivamente, Carbono Orgânico Total (TOC) e Cromatografia Gasosa (GC). Resultados preliminares mostraram que os catalisadores ZnO comercial e sintetizado (ZnO Merck e ZnO-B) apresentam atividade fotocatalítica e desempenho similares aos do TiO2 para a degradação da rodamina B. Contudo, estes mesmos catalisadores mostraram-se pouco ativos para a produção fotocatalítica de hidrogênio, com desempenho bastante inferior ao do TiO2 nas mesmas condições. Foi possível observar que o maior rendimento em hidrogênio ocorre para baixas concentrações de catalisador (0,05 gL[elevado a potência menos]1) e elevadas concentrações de etanol, sendo pouco dependente do pH. / This work aims to investigate the hydrogen production from ethanol-water solutions through photocatalysis, using zinc oxide catalysts (ZnO). Five ZnO catalysts were employed in this work; one was a commercial catalyst, while the others were prepared according to different methodologies reported in the literature. The catalysts were characterized by BET, XRD and XRF, and the preliminary investigation of their activity was done by photocatalytic degradation of rhodamine B, through the evaluation of the reaction rate and dye removal. Tests for photocatalytic hydrogen production were carried out in a quartz slurry batch reactor under nitrogen, irradiated by a set of six compact UV light bulbs. During the tests, gas and liquid samples were collected and analyzed in order to identify the consumption of ethanol and hydrogen production using, respectively, Total Organic Carbon (TOC) and Gas Chromatograph (GC). Preliminary results showed that the synthesized and commercial ZnO catalysts (ZnO-B and ZnO Merck) present photocatalytic activity and performance similar to TiO2 for the rhodamine B degradation. However, the ZnO catalysts presented lower performance when compared with TiO2 for hydrogen production, under the same conditions. It was observed that the highest hydrogen yield occurs for low concentrations of catalyst (0.05 gL1) and high concentrations of ethanol, being less dependent on pH.
4

Construction of a temperature controlled sample stage and the application on single molecule study liquid crystals

Chuang, Yu-Tzu 10 February 2006 (has links)
In this dissertation, we construct a temperature controlled sample stage that is compatible with high numerical aperture objective optical microscope, and perform single molecule experiments under the system. Mixing dilute fluorophore (CdSe/ZnS quantum dot, DiI, Rhodamine B) into the liquid crystal matrix (5CB), we monitor the fluorescence dynamics of the individual fluorophore at various temperature. Different from the thermodynamic states of conventional materials, those specific class of materials which we called ¡§liquid crystals¡¨ are attracted for their existence of unique liquid crystal phase, which exhibits a solid-state like higher orientation ordering, and a liquid-state like liquidity. Probe individual fluorophore allows us to monitor the nanometer length scale local structural and dynamic heterogeneity in the solid, liquid crystal and liquid phases. The operating temperature of the platform covers more than 20 oC to 40 oC range with stability much better than 0.1 oC. Quantum dot in PMMA exhibits a clear on-off blinking behavior, and the single exponential fluorescence lifetime relaxation. While in the solid phase of the liquid crystal matrix, quantum dot exhibits similar behavior, which indicates the quantum dot is confined in the matrix. However, there exists slightly difference in decay lifetime. On the contrary, in the liquid crystalline phase as well as the liquid phase, quantum dot exhibits bi-exponential relaxation behavior. Besides a similar time scale relaxation dynamics, there exists additional fast decay behavior, which is from the feasible rotational rotation in the non-rigid matrix. In particular, the anisotropic decay dynamics in the liquid crystalline phase indicates the orientation preference of the liquid crystal molecules. Fluorescence Correlation Spectroscopy (FCS) provides the information of local dynamics of various time scales. FCS results exhibit an unclear transition that crossovers several decades in time scale, which indicates the highly heterogeneity of the liquid crystal. The results of DiI exhibits different rising time in the fluorescence lifetime measurement, which implies the forming of aggregation due to the limited solubility of the DiI molecules in the liquid crystal matrix. Results of Rhodamine B exhibit a clear rotational diffusion dynamics at ~ microsecond scale and the corresponding translational diffusion dynamics at ~ mini-second scale. Moreover, the transition time scale of translational diffusion exhibits a temperature dependence. At higher temperature, it shifts to a shorter time scale.
5

Single molecule investigating Rhodamine B dilute solution at confocal and TIR configurations

Wei, Yi-chung 18 January 2007 (has links)
The motion of dye molecules in the solution is highly influenced by the Brownian motion caused by the stochastic collisions with the solvents, and it results the fluorescence intensity fluctuation. The thesis study the fluorescence intensity fluctuation of dilute dye molecule (Rhodamine B) in methanol solution ( - ), under confocal and total internal reflection (TIR) microscopy configurations. Five parameters are used to probe the fluorescence characteristics: (1) the difference between confocal and the TIR configurations. The configuration influences the laser focusing area and consequently the intensity distribution. The effective focusing area in confocal configuration is an ellipsoid shape, while that of TIR configuration is a disk shape around the interface with depth 100-200 nm. It results the TIR configuration less background and higher concentration capability. (2) concentration. We control the concentration from much less than one molecule to more than one molecule in the effective focusing area, and we observe the change of burst intensity distribution. (3) the focus position. By changing the focusing position, we study the effective focusing region changes. (4) excited intensity, and (5) fluorescence correlation spectroscopy (FCS). Our results indicate that TIR configuration exhibits lower background, and is suitable to higher concentration solution. In addition, when the dye concentration in the focusing area is much less than 1, the FCS amplitude is no longer follow 1/N, but rather be proportional to N, where N is the concentration.
6

Preparation, Characterization and Testing for Photocatalytic Activities of Bi2WO6-based Materials

Qin, Hanna 13 December 2012 (has links)
PdCl2/Bi2WO6 and Pd/Bi2WO6 composite photocatalysts were synthesized via a template free hydrothermal process and the respective photocatalytic activities were investigated by degradation of Rhodamine B. The new catalyst composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet visible (UV-vis) light diffuse reflectance spectra, respectively. By XRD, it was found that the loaded Pd species did not alter the crystal lattice of Bi2WO6 photocatalyst. Through the XPS spectra, it was found that the PdCl2/Bi2WO6 was successfully reduced by chemical reducing agents CH2O and N2H4, respectively, and palladium was present in the form of both metallic Pd and Pd ion spe-cies (Pd0 and Pd2+), while the Pd species in a NaBH4-reduced composite exhibited only metallic Pd species (Pd0). For the SEM images, it was observed that both classes of composites were constructed from plenty of nanoplates, which were closed packed with hierarchical structures. Furthermore, the removal efficiency of Rhodamine B was found to be influenced by parameters such as catalyst dosage, pollutant concentration and solution pH.
7

Thermometry of flow fields using a two-color ratiometric PLIF technique

Heronemus, Seth M. January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / Steven Eckels / In this thesis, a two-color ratiometric planar laser-induced fluorescence (PLIF) technique for the measurement of temperature fields in liquids is described. The method uses the temperature sensitive rhodamine B and temperature insensitive rhodamine 110 fluorescent dyes. The ratio of the fluorescent emission intensity of these two dyes is inversely proportional to temperature and is independent of laser intensity variation in the flow field. Because the emission spectra of these two dyes overlap, a correction was developed to disentangle the two signals. In addition, the absorption spectra of rhodamine B and rhodamine 110 and emission spectrum of rhodamine 110 overlap, leading to the self-attenuation of the rhodamine 110 signal by the dye solution. A correction with respect to path length was developed for self-attenuation. This thesis presents the calibration process for a PLIF thermometry system and visualization of temperature gradients in a glass water tank with motion induced by large temperature gradients. A step-by-step procedure of the final calibration process is also presented.
8

Produção fotocatalítica de hidrogênio a partir de soluções de etanol em água

Espindola, Juliana da Silveira January 2010 (has links)
O presente trabalho tem o objetivo de investigar a obtenção de hidrogênio a partir de soluções de etanol em água, por fotocatálise, usando-se catalisadores a base de óxido de zinco (ZnO). Nestes estudos foram empregados cinco catalisadores ZnO, sendo um comercial e os demais preparados através de diferentes metodologias encontradas na literatura. Os catalisadores foram caracterizados por área BET, DRX e FRX, e a investigação preliminar da atividade destes catalisadores foi feita através de ensaios de degradação fotocatalítica de rodamina B em reator slurry em batelada, onde foram avaliadas a taxa de reação e a remoção de corante. Os ensaios para a produção fotocatalítica de hidrogênio foram realizados em um reator de quartzo, operado em batelada com catalisador em suspensão e atmosfera inerte de nitrogênio. A solução foi irradiada por uma série de seis lâmpadas compactas de luz negra. Ao longo dos testes, amostras das fases líquida e gasosa foram coletadas e analisadas para identificação do consumo de etanol e produção de hidrogênio usando-se, respectivamente, Carbono Orgânico Total (TOC) e Cromatografia Gasosa (GC). Resultados preliminares mostraram que os catalisadores ZnO comercial e sintetizado (ZnO Merck e ZnO-B) apresentam atividade fotocatalítica e desempenho similares aos do TiO2 para a degradação da rodamina B. Contudo, estes mesmos catalisadores mostraram-se pouco ativos para a produção fotocatalítica de hidrogênio, com desempenho bastante inferior ao do TiO2 nas mesmas condições. Foi possível observar que o maior rendimento em hidrogênio ocorre para baixas concentrações de catalisador (0,05 gL[elevado a potência menos]1) e elevadas concentrações de etanol, sendo pouco dependente do pH. / This work aims to investigate the hydrogen production from ethanol-water solutions through photocatalysis, using zinc oxide catalysts (ZnO). Five ZnO catalysts were employed in this work; one was a commercial catalyst, while the others were prepared according to different methodologies reported in the literature. The catalysts were characterized by BET, XRD and XRF, and the preliminary investigation of their activity was done by photocatalytic degradation of rhodamine B, through the evaluation of the reaction rate and dye removal. Tests for photocatalytic hydrogen production were carried out in a quartz slurry batch reactor under nitrogen, irradiated by a set of six compact UV light bulbs. During the tests, gas and liquid samples were collected and analyzed in order to identify the consumption of ethanol and hydrogen production using, respectively, Total Organic Carbon (TOC) and Gas Chromatograph (GC). Preliminary results showed that the synthesized and commercial ZnO catalysts (ZnO-B and ZnO Merck) present photocatalytic activity and performance similar to TiO2 for the rhodamine B degradation. However, the ZnO catalysts presented lower performance when compared with TiO2 for hydrogen production, under the same conditions. It was observed that the highest hydrogen yield occurs for low concentrations of catalyst (0.05 gL1) and high concentrations of ethanol, being less dependent on pH.
9

Produção fotocatalítica de hidrogênio a partir de soluções de etanol em água

Espindola, Juliana da Silveira January 2010 (has links)
O presente trabalho tem o objetivo de investigar a obtenção de hidrogênio a partir de soluções de etanol em água, por fotocatálise, usando-se catalisadores a base de óxido de zinco (ZnO). Nestes estudos foram empregados cinco catalisadores ZnO, sendo um comercial e os demais preparados através de diferentes metodologias encontradas na literatura. Os catalisadores foram caracterizados por área BET, DRX e FRX, e a investigação preliminar da atividade destes catalisadores foi feita através de ensaios de degradação fotocatalítica de rodamina B em reator slurry em batelada, onde foram avaliadas a taxa de reação e a remoção de corante. Os ensaios para a produção fotocatalítica de hidrogênio foram realizados em um reator de quartzo, operado em batelada com catalisador em suspensão e atmosfera inerte de nitrogênio. A solução foi irradiada por uma série de seis lâmpadas compactas de luz negra. Ao longo dos testes, amostras das fases líquida e gasosa foram coletadas e analisadas para identificação do consumo de etanol e produção de hidrogênio usando-se, respectivamente, Carbono Orgânico Total (TOC) e Cromatografia Gasosa (GC). Resultados preliminares mostraram que os catalisadores ZnO comercial e sintetizado (ZnO Merck e ZnO-B) apresentam atividade fotocatalítica e desempenho similares aos do TiO2 para a degradação da rodamina B. Contudo, estes mesmos catalisadores mostraram-se pouco ativos para a produção fotocatalítica de hidrogênio, com desempenho bastante inferior ao do TiO2 nas mesmas condições. Foi possível observar que o maior rendimento em hidrogênio ocorre para baixas concentrações de catalisador (0,05 gL[elevado a potência menos]1) e elevadas concentrações de etanol, sendo pouco dependente do pH. / This work aims to investigate the hydrogen production from ethanol-water solutions through photocatalysis, using zinc oxide catalysts (ZnO). Five ZnO catalysts were employed in this work; one was a commercial catalyst, while the others were prepared according to different methodologies reported in the literature. The catalysts were characterized by BET, XRD and XRF, and the preliminary investigation of their activity was done by photocatalytic degradation of rhodamine B, through the evaluation of the reaction rate and dye removal. Tests for photocatalytic hydrogen production were carried out in a quartz slurry batch reactor under nitrogen, irradiated by a set of six compact UV light bulbs. During the tests, gas and liquid samples were collected and analyzed in order to identify the consumption of ethanol and hydrogen production using, respectively, Total Organic Carbon (TOC) and Gas Chromatograph (GC). Preliminary results showed that the synthesized and commercial ZnO catalysts (ZnO-B and ZnO Merck) present photocatalytic activity and performance similar to TiO2 for the rhodamine B degradation. However, the ZnO catalysts presented lower performance when compared with TiO2 for hydrogen production, under the same conditions. It was observed that the highest hydrogen yield occurs for low concentrations of catalyst (0.05 gL1) and high concentrations of ethanol, being less dependent on pH.
10

Preparation, Characterization and Testing for Photocatalytic Activities of Bi2WO6-based Materials

Qin, Hanna January 2012 (has links)
PdCl2/Bi2WO6 and Pd/Bi2WO6 composite photocatalysts were synthesized via a template free hydrothermal process and the respective photocatalytic activities were investigated by degradation of Rhodamine B. The new catalyst composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet visible (UV-vis) light diffuse reflectance spectra, respectively. By XRD, it was found that the loaded Pd species did not alter the crystal lattice of Bi2WO6 photocatalyst. Through the XPS spectra, it was found that the PdCl2/Bi2WO6 was successfully reduced by chemical reducing agents CH2O and N2H4, respectively, and palladium was present in the form of both metallic Pd and Pd ion spe-cies (Pd0 and Pd2+), while the Pd species in a NaBH4-reduced composite exhibited only metallic Pd species (Pd0). For the SEM images, it was observed that both classes of composites were constructed from plenty of nanoplates, which were closed packed with hierarchical structures. Furthermore, the removal efficiency of Rhodamine B was found to be influenced by parameters such as catalyst dosage, pollutant concentration and solution pH.

Page generated in 0.058 seconds