Return to search

Synthesis and electrochemical characteristics of nitroxide polymer brushes for thin-film electrodes

We reported a non-crosslinking approach to synthesize nitroxide radical polymer brushes for thin-film electrodes via surface-initiated atom transfer radical polymeization (SI-ATRP), which was effective to yield the organic radical polymer brushes with high grafting density and to attain a uniform surface. As mentioned above, the covalent bonding of nitroxide polymer brushes to the conducting substrate not only prevented the polymer dissolution into organic electrolyte solution but improved the cycle life performance of batteries. Moreover, they can be the potential application in microbatteries by using microcontact printing to produce the patterned nitroxide polymer brushes on a conducting substrate.
Even though the organic radical polymer brushes provided a new approach to syn-thesize thin-film electrodes, they still existed many problems that needed to study and to figure out. We discussed the morphology and electrochemical performance about ni-troxide radical polymer in the thesis. In the measurement of surface properties, we used the contact angle, electron spectroscopy for chemical analysis (ESCA) and atomic force microscopic (AFM) to proceed. Another, in the measurement of electrochemical analysis, we used the cyclic voltammetry(CV), alternating current (AC) impedance and charge-discharge to understand the regarding mechanism in this polymer layer during the electrochemical reaction.
In chapter 4, we discussed the oxidative problem in the polymer brushes. It should be well controlled during the oxidation reaction, because the oxidation level may affect the diffusion of electron that resulted the capacity better or not. In chapter5, we controlled the density of polymer brushes to construct the possible mechanism during the electro-chemical reaction, and found out the possible factors that affected the electrochemistry. In chapter 6, we applied the better results from the front chapter to the organic radical battery, and compared their electrical performance.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0627112-041106
Date27 June 2012
CreatorsHung, Miao-ken
ContributorsCheng-Lung Chen, Jyh-Tsung Lee, Mao-Sung Wu
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0627112-041106
Rightsuser_define, Copyright information available at source archive

Page generated in 0.002 seconds