• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis and electrochemical studies of nitroxide radical polymer brushes via surface-initiated atom transfer radical polymerization

Wang, Yu-Hsuan 27 July 2010 (has links)
A non-crosslinking approach that covalently bonds nitroxide polymer brushes onto the ITO substrates via surface-initiated atom transfer radical polymerization (ATRP) was develpoed. Since the indium tin oxide (ITO)-silane covalent bonding providesvery strong chemical bonds to adsorb the nitroxide polymer brushes on ITO, it prevents polymers from dissolving into electrolyte solvent and thus improves its electrochemical properties. Moreover, micro-contact printing technology was used to pattern nitroxide polymer brushes on an ITO surface for the potential application in microbatteries. The morphology of electrodes was observed by atomic force microscopy.The electrochemical properties of the cathode were also studies.
2

Nitroxide Polymer Brushes Grafted onto Silica Nanoparticles as Cathodes for Organic Radical Batteries

Lin, Hsiao-chien 13 October 2011 (has links)
Nitroxide polymer brushes grafted on silica nanoparticles as binder-free cathode for organic radical battery have been investigated. Scanning electron microscopy, transmission electron microscopy, infrared spectroscopy and electron spin resonance confirm that the nitroxide polymer brushes are successfully grafted onto silica nanoparticles via surface-initiated atom transfer radical polymerization. The thermogravimetric analysis results indicate that the onset decomposition temperature of these nitroxide polymer brushes is found to be ca. 201 ◦C. The grafting density of the nitroxide polymer brushes grafted on silica nanoparticles is 0.74¡V1.01 chains nm−2. The results of the electrochemical quartz crystal microbalance indicate that the non-crosslinking nitroxide polymer brushes prevent the polymer from dissolving into organic electrolytes. Furthermore, the electrochemical results show that the discharge capacity of the polymer brushes is 84.9¡V111.1 mAh g−1 at 10 C and the cells with the nitroxide polymer brush electrodes have a very good cycle-life performance of 96.3% retention after 300 cycles.
3

Synthesis and electrochemical characteristics of nitroxide polymer brushes for thin-film electrodes

Hung, Miao-ken 27 June 2012 (has links)
We reported a non-crosslinking approach to synthesize nitroxide radical polymer brushes for thin-film electrodes via surface-initiated atom transfer radical polymeization (SI-ATRP), which was effective to yield the organic radical polymer brushes with high grafting density and to attain a uniform surface. As mentioned above, the covalent bonding of nitroxide polymer brushes to the conducting substrate not only prevented the polymer dissolution into organic electrolyte solution but improved the cycle life performance of batteries. Moreover, they can be the potential application in microbatteries by using microcontact printing to produce the patterned nitroxide polymer brushes on a conducting substrate. Even though the organic radical polymer brushes provided a new approach to syn-thesize thin-film electrodes, they still existed many problems that needed to study and to figure out. We discussed the morphology and electrochemical performance about ni-troxide radical polymer in the thesis. In the measurement of surface properties, we used the contact angle, electron spectroscopy for chemical analysis (ESCA) and atomic force microscopic (AFM) to proceed. Another, in the measurement of electrochemical analysis, we used the cyclic voltammetry(CV), alternating current (AC) impedance and charge-discharge to understand the regarding mechanism in this polymer layer during the electrochemical reaction. In chapter 4, we discussed the oxidative problem in the polymer brushes. It should be well controlled during the oxidation reaction, because the oxidation level may affect the diffusion of electron that resulted the capacity better or not. In chapter5, we controlled the density of polymer brushes to construct the possible mechanism during the electro-chemical reaction, and found out the possible factors that affected the electrochemistry. In chapter 6, we applied the better results from the front chapter to the organic radical battery, and compared their electrical performance.

Page generated in 0.0925 seconds