Return to search

Preparations and characterization of BSCF perovskite as solid oxide fuel cell cathode

For the last two decades, solid oxide fuel cells (SOFCs) have been operated in high temperatures > 1000¢XC. Recently, more efforts have been concentrated on the intermediate temperature SOFCs in which Ba0.5Sr0.5Ce0.8Fe0.2O3-£_ (BSCF) is a very promising cathode material capable of working in this intermediate temperature range of 500~700¢XC.
In this work, both glycine and citric acid methods were employed to prepare BSCF powders. Preparation parameters such as concentration of organic components and calcination temperature were varied to obtain powders of different morphologies and particle sizes. Slurries containing the prepared powders were then used to print BSCF cathode films on electrolyte disks. The impedances of the resultant cathodes were measured and analyzed to evaluate the effects of powder preparation parameters and film microstructures.
The results show that the BSCF cathode derived from the powder prepared by the modified citric acid method and then sintered at 900¢XC has the best electrochemical performance. With high porosity and well dispersed pores, this cathode has interfacial area specific resistance (ASR) values as low as 0.78 £[cm2 at 500¢XC, 0.10 £[cm2 at 600¢XC and 0.018 £[cm2 at 700¢XC, which are significantly lower than that obtained from the unmodified citric acid or glycine method.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0714108-160829
Date14 July 2008
CreatorsChen, Chiung-Hsun
ContributorsHsu, Tzu-Chien, Hwang, Bing-Hwai, Lu, Hong-Yang
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0714108-160829
Rightsnot_available, Copyright information available at source archive

Page generated in 0.0024 seconds