Return to search

Energy Efficient Multicast Scheduling with Adaptive Modulation and Coding for IEEE 802.16e Wireless Metropolitan Area Networks

One of the major applications driving wireless network services is video streaming, which is based on the ability to simultaneously multicast the same video contents to a group of users, thus reducing the bandwidth consumption. On the other hand, due to slow progress in battery technology, the investigation of power saving technologies becomes important. IEEE 802.16e (also known as Mobile WiMAX) is currently the international MAC (medium access control) standard for wireless metropolitan area networks. However, in 802.16e, the power saving class for multicast traffic is designed only for best-effort-based management operations. On the other hand, SMBC-AMC adopts the concepts of ¡§multicast superframe¡¨ and ¡§logical broadcast channel¡¨ to support push-based multicast applications. However, SMBC-AMC requires that (1) the number of frames in each logical broadcast channel must be equal, (2) all mobile stations must have the same duty cycle, and (3) the base station must use the same modulation to send data in a frame. These imply that SMBC-AMC is too inflexible to reach high multicast energy throughput. In this thesis, we propose cross-layer energy efficient multicast scheduling algorithms, called EEMS-AMC, for scalable video streaming. The goal of EEMS-AMC is to find a multicast data scheduling such that the multicast energy throughput of a WiMAX network is maximum. Specifically, EEMS-AMC has the following attractive features: (1) By means of admission control and the restriction of the multicast superframe length, EEMS-AMC ensures that the base layer data of all admitted video streams can be delivered to mobile stations in timeliness requirements. (2) EEMS-AMC adopts the greedy approach to schedule the base layer data such that the average duty cycle of all admitted stations can approach to the theoretical minimum. (3) EEMS-AMC uses the metric ¡§potential multicast throughput¡¨ to find the proper modulation for each enhancement layer data and uses the metric ¡§multicast energy throughput gain¡¨ to find the near-optimal enhancement layer data scheduling. Simulation results show that EEMS-AMC significantly outperforms SMBC-AMC in terms of average duty cycle, multicast energy throughput, multicast packet loss rate, and normalized total utility.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0714111-152034
Date14 July 2011
CreatorsHsu, Chao-Yuan
ContributorsTsang-Ling Sheu, Zi-Tsan Chou, Chung-nan Lee
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0714111-152034
Rightsnot_available, Copyright information available at source archive

Page generated in 0.0023 seconds