Return to search

Fine-grain parallelism on sequential processors

There seems to be a consensus that future Massively Parallel Architectures
will consist of a number nodes, or processors, interconnected by high-speed network.
Using a von Neumann style of processing within the node of a multiprocessor system
has its performance limited by the constraints imposed by the control-flow execution
model. Although the conventional control-flow model offers high performance on
sequential execution which exhibits good locality, switching between threads and synchronization
among threads causes substantial overhead. On the other hand, dataflow
architectures support rapid context switching and efficient synchronization but require
extensive hardware and do not use high-speed registers.
There have been a number of architectures proposed to combine the instruction-level
context switching capability with sequential scheduling. One such architecture
is Threaded Abstract Machine (TAM), which supports fine-grain interleaving of multiple
threads by an appropriate compilation strategy rather than through elaborate hardware.
Experiments on TAM have already shown that it is possible to implement the dataflow
execution model on conventional architectures and obtain reasonable performance.
These studies also show a basic mismatch between the requirements for fine-grain
parallelism and the underlying architecture and considerable improvement is possible through hardware support.
This thesis presents two design modifications to efficiently support fine-grain parallelism. First, a modification to the instruction set architecture is proposed to reduce the cost involved in scheduling and synchronization. The hardware modifications are kept to a minimum so as to not disturb the functionality of a conventional RISC processor. Second, a separate coprocessor is utilized to handle messages. Atomicity and message handling are handled efficiently, without compromising per-processor performance and system integrity. Clock cycles per TAM instruction is used as a measure to study the effectiveness of these changes. / Graduation date: 1995

Identiferoai:union.ndltd.org:ORGSU/oai:ir.library.oregonstate.edu:1957/35231
Date07 September 1994
CreatorsKotikalapoodi, Sridhar V.
ContributorsLee, Ben
Source SetsOregon State University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.002 seconds