Return to search

Receiver Function Analysis and Acoustic Waveform Modeling for Imaging Earth’s Crust: New Techniques and Their Applications

The crust is the outer-most layer of the earth with thickness up to 80 km. Massive seismic waveform data have enabled imaging fine crustal structures with the aid of new imaging techniques. In this thesis, I develop seismic imaging techniques to take full advantage of the expanding dataset as well as apply the imaging techniques to understand crustal seismic structures. First, I apply receiver function techniques to image the crustal thickness and average Vp/Vs in Northeast China. I found an uplifted Moho in eastern flank of the Songliao Basin and the Changbaishan region and suggest that dynamic mantle upwelling might be the cause of the observed uplift. With accumulated waveform data available, it becomes possible to extract more subtle structural information from receiver function. Second, I develop a new technique to robustly estimate seismic azimuthal anisotropy with radial and transverse receiver functions. I apply this technique to estimate the crustal anisotropy in Southeast Yunnan region and found that the significant crustal anisotropy may be caused by lower crust flow in this region. Full-wave based imaging techniques such as reverse time migration and full-wave inversion does not assume flat interfaces or infinite frequency rays as that the receiver function techniques do and are desirable in imaging more complex crustal structures. However, their high computational cost is one of the issues that prevent their practical applications. In the last part, I developed an effective waveform modeling technique to efficiently simulate wave propagation in acoustic media. With this novel modeling technique, the full-wave based imaging techniques are accelerated by a factor up to 400%.

Identiferoai:union.ndltd.org:RICE/oai:scholarship.rice.edu:1911/71987
Date16 September 2013
CreatorsLiu, Huafeng
ContributorsNiu, Fenglin
Source SetsRice University
LanguageEnglish
Detected LanguageEnglish
Typethesis, text
Formatapplication/pdf

Page generated in 0.0018 seconds