Return to search

A novel depleted monolithic active pixel sensor for future high energy physics detectors

El Gran Colisionador de Hadrones (LHC) tiene previsto aumentar su luminosidad hasta siete veces su valor actual con el objetivo de ampliar su actual programa de física. Esta mejora se conoce con el nombre de High Luminosity LHC (HL-LHC) y está prevista para el año 2024-2026. El actual Inner Detector (ID) del detector de ALTAS será completamente reemplazado por uno nuevo para ajustarse a los rigurosos requisitos que impone el HL-LHC. Nuevos detectores de píxeles están siendo investigados para su utilización en todo el ID cuando el HL-LHC entre en operación. La utilización de sensores de píxeles tipo monolítico dentro del ID de ATLAS supondría una nueva era para los detectores de píxeles en física de altas energías debido a sus muchas ventajas con respecto a las tecnologías que se usan actualmente. Las principales ventajas son: mejor resolución espacial, menor densidad, mayor rendimiento, y menor coste. En este contexto, un nuevo tipo de sensor monolítico conocido como Depleted Monolithic Active Pixel Sensor on silicon-on-insulator ha sido investigado en esta tesis.

El capítulo 1 describe el LHC, el experimento ATLAS, y las mejoras previstas para el HL-LHC. Este capítulo también describe los requerimientos y desafíos del futuro Inner Detector, al ser el subdetector más cercano al punto de interacción. El capítulo 2 describe la base de los detectores de partículas en física de altas energías. Este capítulo abarca la interacción de partículas con la materia, los conceptos básicos para la construcción de un detector de píxeles, y la resolución de momento transverso, vértice, y parámetro de impacto de un detector. El capítulo 3 describe los daños que la radiación produce en detectores de silicio, tanto en la electrónica como en el sensor, cuyo impacto es crucial en el rendimiento de los detectores especialmente para experimentos en el HL-LHC. El capítulo 4 revisa la evolución y tendencias en detectores de pixeles, abarcando desde los ya bien establecidos pixel híbridos, hasta los CMOS píxeles. La sección dedicada a los CMOS píxeles describe los diferentes tipos que se están considerando en ATLAS: High resistivity CMOS, high voltage CMOS, y monolíticos CMOS-on-SOI. Este ultimo compone el núcleo de estudio de esta tesis y es descrito en detalle.

Los siguientes capítulos detallan el programa de caracterización y medidas
realizado en el contexto de esta tesis. El capitulo 5 se centra en la caracterización del daño creado por la radiación en la electrónica hasta las dosis esperadas en el ID de ATLAS durante su operación en el HL-LHC. Las propiedades del detector, como son las corrientes de fuga, el cociente entre señal y ruido, la colección de carga y la profundidad de depleción, son descritas en el capitulo 6. El Capítulo 7 describe la caracterización de sensores monolíticos CMOS-on-SOI en un haz de piones, donde la colección de carga, el reparto de carga entre píxeles, la resolución espacial, y la eficiencia son discutidas.

Este trabajo concluye con un resumen, con vistas al futuro de las tecnologías monolíticas CMOS-on-SOI en la física de altas energías. / A major upgrade of the Large Hadron Collider (LHC) called High Luminosity LHC (HL-LHC) is scheduled for 2024-2026. This will lead to an increase of the luminosity by seven times the current value and to the extension of the currently ongoing physics programme. A completely new Inner Detector for the ATLAS experiment needs to be developed to withstand the extremely harsh environment at the HL-LHC. New pixel detector concepts are being investigated as a possible candidate to the inner and outer layers of the HL-LHC ATLAS Inner Detector. The use of monolithic pixel sensors in the ATLAS Inner Tracker would lead to a new era of pixel detectors as a consequence of its many advantages with respect to the current technologies. The achievement of smaller spatial resolution, lower density, bigger production yield and throughput, and smaller budget cost are the main arguments to pursue this technology. In this context, a novel Depleted Monolithic Pixel Active Detector built on a thick film Silicon-On-Insulator has been fully investigated in this thesis.

Chapter 1 introduces LHC and the ATLAS experiment as well as their foreseen scenarios at the HL-LHC upgrade. This naturally motivates the stringent requirements and challenges of the closest sub-detector to the interaction point, the Inner Detector. Chapter 2 describes the basis of a tracking detector for high energy physics applications, detailing the interactions of particles with matter to the formation of a pixel detector from a semiconductor material. Then the momentum, vertex, and impact parameter resolution of a tracking detector are calculated leading to a set of requirements for the detector design. Chapter 3 describes the radiation damage in silicon detectors whose impact to the detector performance is crucial specially for HL-LHC experiments. The radiation damage in the electronics and in the silicon bulk is treated. Chapter 4 revises the current developments and trends on pixel detectors from the well established hybrid pixel technologies to the commercial CMOS pixels. The commercial CMOS pixels section describes the current technologies being considered at ATLAS: high resistivity, high voltage CMOS (currently built as hybrid and as monolithic), and monolithic CMOS-on-SOI. The latter one composes the core of study of this thesis and is described in great detail.

The final chapters are dedicated to the description of the validation programme performed to the CMOS-on-SOI technology, together with characterization methods used, measurements performed, and results analysis description. Chapter 5 focuses on the measurements performed to characterize the radiation hardness of the technology against the ionizing radiation expected in the HL-LHC ATLAS detector. The crucial charge collection properties to fulfil the ATLAS detector requirements were measured and are described in Chapter 6. These measurements include leakage current, signal-to-noise ratio, collected charge, and depletion depth on unirradiated and irradiated samples. Additionally, different techniques as radioactive sources, pion beams, and laser beams were used in order to calculate the depletion depth. Chapter 7 describes the characterization of the monolithic CMOS-on-SOI in a pion beam test. The measured charge collection, charge sharing, spatial resolution, and tracking efficiency are discussed.

Within the summary, an outlook towards the future of depleted monolithic active pixel sensors on silicon-on-insulator technology for high energy physics is presented.

Identiferoai:union.ndltd.org:TDX_UAB/oai:www.tdx.cat:10803/385732
Date19 May 2016
CreatorsFernandez-Perez, Sonia
ContributorsPadilla Aranda, Cristobal, Fernández, Enrique, Universitat Autònoma de Barcelona. Departament de Química
PublisherUniversitat Autònoma de Barcelona
Source SetsUniversitat Autònoma de Barcelona
LanguageEnglish
Detected LanguageSpanish
Typeinfo:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion
Format154 p., application/pdf
SourceTDX (Tesis Doctorals en Xarxa)
RightsL'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/es/, info:eu-repo/semantics/openAccess

Page generated in 0.0061 seconds