Tesi realitzada a l'Institut de Recerca en Energia de Catalunya (IREC) / Fuel cells are one of the promising technology at present to meet the growing demand of clean energy and technology. Among the different varieties of fuel cells, Solid Oxide Fuel Cell (SOFC) research is advancing towards the device miniaturization (called “micro-SOFC” with thin film components) with the operation temperature in the range ≈ 500°C to 700°C for portable device application.
In SOFC components, cathode causes major polarization loss due to the sluggishness of oxygen reduction reaction (ORR) at low operating temperature that would affect the device efficiency. To rectify this there are various groups working towards the enhancement of cathode functionality at low operating temperature. Generally, the functionality of cathode can be enhanced by two ways i) improving the intrinsic properties of existing cathode materials by making modifications in the cathode microstructure ii) search for the new cathode materials.
The thin film cathodes studied in this thesis are La0.8Sr0.2MnO3+δ (LSM), La0.8Sr0.2CoO3-δ (LSC) and La0.8Sr0.2Mn1-xCoxO3±δ (LSMC; from x=0 to 1) a pseudo-binary system, which are Mixed Ionic Electronic Conductors (MIEC) conduct both ions and electrons. The aforementioned two ways are followed in this thesis to enhance the cathode functionality by implementing nanoionics concept.
The behavior of ionic conduction in nano-regime (<100nm) is totally different than bulk and the study of such ionic transport in nanoscale is the field of nanoionics. Especially, the interfaces such as space-charge layer and grain boundaries act as a highway for fast oxygen ion conduction that can enhance the overall charge transport in the nanostructures. In this thesis, oxygen mass transport properties are studied in cathodes in thin film form by making modifications in the thin film nanostructure in order to observe and enhance the charge transport along the interface of grain boundaries as well as to understand the fast ionic transport in such interfaces.
Generally, the thin film nanostructure offered by Pulsed Laser Deposition (PLD) exhibit columnar grains that can act as a highway for ionic conduction and suitable for the proposed work. Therefore PLD is used as a tool to study the ionic transport in the interfaces. Further, LSM/LSC multilayer deposition studies are conducted in PLD to find out the optimum thickness for the fabrication of a combinatorial LSMC pseudo-binary system without any parasitic phases.
Among the cathode materials studied in this thesis, LSM is a classical and well-studied cathode material. The functional properties i.e. oxygen mass transport properties (oxygen self-diffusion and surface exchange coefficients, D^*and k^*, respectively) of LSM thin film cathodes are studied by Isotope Exchange depth Profiling using Secondary ion Mass Spectroscopy (IEDP-SIMS) and Electrochemical Impedance Spectroscopy (EIS) techniques in the temperature range 500°C to 700°C.
In the study on LSMC pseudo-binary, a novel (new) methodology is presented for the screening of materials for SOFC application. The methodology is based on a combinatorial deposition of thin films by PLD on 4-inch silicon wafers, further it is possible to predict the thickness and compositional map of LSMC binary using this methodology. The proposed methodology can be extended for generating full range binary and ternary diagrams of compositions even for very complex oxides (due to an excellent transfer of the stoichiometry). IEDP-SIMS is carried out for evaluating oxygen mass transport properties of LSMC system in the compositions with cobalt content x ≈ 0.04 to 0.85 in the temperature range 600°C to 800°C.
This thesis is divided into six chapters and a short summary to each chapter is given below including appendix.
Chapter 1: An introduction to the scope of the thesis.
Chapter 2: An introduction to the experimental method employed in this thesis.
Chapter 3: Parent materials (LSM and LSC) microstructural optimization in PLD.
Chapter 4: Oxygen ion transport study in LSM thin film cathodes.
Chapter 5: Fabrication and microstructural characterization of LSMC thin film pseudo-binary system.
Chapter 6: Oxygen ion transport study in LSMC thin film system.
Appendix A: Introduction to Two-slab model.
Appendix B: Fabrication of LSM-LSC-LSF pseudo-ternary system. / La Nanoiónica se ha convertido en un campo cada vez más prometedor para el futuro desarrollo de dispositivos avanzados de conversión y almacenamiento de energía, tales como baterías, pilas de combustible y supercondensadores. En particular, los materiales nanoestructurados ofrecen propiedades únicas o combinaciones de propiedades en electrodos y electrolitos en una gama de dispositivos de energía. Sin embargo, la mejora de las propiedades de transporte de masa a nivel nano, a menudo se ha encontrado que son difíciles de implementar en nonoestructuras.
En esta tesis, se investigó el transporte de iones oxígeno en cátodos tipo perovskita-conductor mixto iónico y electrónico (MIEC) de capa delgada (grosor < 200nm) con una estructura nonoestructurada, con el objetivo de correlacionar el transporte de iones oxígeno con la estructura del film a nivel de grano interior y límite de grano.
El trabajo desarrollado en esta tesis se ha dividido en seis partes. El primer capítulo, introduce los conceptos básicos de las pilas de combustible de óxido sólido, la importancia de los cátodos de película delgada y el concepto de nanoiónica. El segundo capítulo explica el principio y el funcionamiento de todas las técnicas experimentales empleadas en esta tesis para la caracterización microestructural y funcional de los cátodos de película delgada. Los siguientes capítulos contienen el trabajo principal de la tesis.
Las condiciones de deposición y estudios de optimización microestructural realizados mediante PLD para fabricar cátodos de película delgada se compilan en el capítulo tres. Las propiedades de transporte de iones de oxígeno del La0.8Sr0.2MnO3+δ (LSM) de películas delgadas se estudian en el capítulo cuatro. Además, en el capítulo cinco se presenta una nueva metodología de proyección de materiales, para celdas de combustible de óxido sólido (SOFC). La metodología se basa en una deposición combinatoria de La0.8Sr0.2Mn1-xCoxO3±δ (LSMC) por PLD en una oblea de silicio de 4 pulgadas que permite la generación de un diagrama binario completo de composiciones, incluso para óxidos complejos. El capítulo seis se dedica a los estudios funcionales del sistema binario LSMC
La técnica de intercambio de isotopos en perfiles profundos combinada con la espectroscopia iónica de masas (IEDP-SIMS) se empleó en el rango de temperatura de 500°C a 800°C para la evaluación de las propiedades de transporte de masa de oxígeno del LSM y el sistema binario LSMC. Además, las propiedades de transporte de masa de oxígeno del LSM se estudió mediante Espectroscopia de Impedancia Electroquímica (EIS).
Identifer | oai:union.ndltd.org:TDX_UB/oai:www.tdx.cat:10803/362363 |
Date | 04 December 2015 |
Creators | Aruppukottai Muruga Bhupathi, Saranya |
Contributors | Tarancón Rubio, Albert, Morata García, Alex, Peiró Martínez, Francisca, Universitat de Barcelona. Departament d'Electrònica |
Publisher | Universitat de Barcelona |
Source Sets | Universitat de Barcelona |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion |
Format | 193 p., application/pdf |
Source | TDX (Tesis Doctorals en Xarxa) |
Rights | L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by/3.0/es/, info:eu-repo/semantics/openAccess |
Page generated in 0.0034 seconds