Return to search

Explicit integration of some integrable systems of classical mechanics

The main objective of the thesis is the analytical and geometrical study of several integrable finite-dimentional dynamical systems of classical mechanics,
which are closely related, namely:
- the classical generalization of the Euler top: the Zhukovski-Volterra (ZV) system describing the free motion of a gyrostat, i.e., a rigid body carrying
a symmetric rotator whose axis is fixed in the body;
- the Steklov-Lyapunov integrable case of the Kirchhoff equations describing the motion of a rigid body in an ideal incompressible liquid;
- a nontrivial integrable generalization of the Steklov-Lyapunov system found by V.Rubanovskii: it describes the motion of a gyrostat in an ideal
fluid in presence of a non-zero circulation.
In our study we obtained explicit solution of the Zhukovski-Volterra ([2] and the Steklov-Lyapunov systems in terms of sigma- or theta-functions,
and performed a bifurcation analysis of these systems, as well as of the Rubanovskii generalization.
One should note that the solution of the ZV system was first given by V. Volterra, who, however, presented only its structure, but not the explicit formulas.
The thesis gives a new alternative solution of this system by using an algebraic parametrization of the angular momentum. This allowed us to find
poles and zeros of angular momentum in an algebraic way. The parametrization was also used to find an explicit solution for the Euler precession angle,
and, as a consequence, to solve the Poisson equations describing the motion of the gyrostat in space.
Similarly, by giving a geometric interpretation of the separating variables, and using the Weierstrass root functions, we reconstructed the thetafunctional
solution of the Steklov-Lyapunov systems, which was first given by F. Kötter in 1899 without a derivation ([3]).
In the study of bifurcations and singularities of the ZV system we used its bi-Hamiltonian structure ([1]. According the new method, the solution is
critical, if there exist a parameter of corresponding family of Poisson brackets, for wich the rang of the brackets with this parameter drops. Applying
new technics, based on the property of the system of being bi-Hamiltonian, we construct the bifurcation diagram of the ZV system. We also find the
equilibrium points of the system, check the non-degeneracy condition for such points in the sense of the singularity theory of Hamiltonian systems,
determine the types of equilibria points, and verify whether they are stable or not. We also describe the topological type of common levels of the first
integrals of the ZV system. Similar problems have been discussed in many papers, but the goal of our work is to study the system and demonstrate the
above techniques. It is a remarkable fact that using the bi-Hamiltonian property makes it possible to answer all the above questions practically without
any difficult computations.
The same method is applied to construct the bifurcation diagram for the Steklov-Lyapunov system, describe the zones of real motion, and analyze
stability of critical periodic solutions. Then the bifurcation analysis is extended to the Rubanovskii generalizaton. Here the main difficulty is that the number of different types of the bifurcation diagram is quite high, so we only describe general properties of the bifurcation curves, do stability analysis for closed trajectories, and equilibria. / El objetivo principal de la tesis es el estudio analítico y geométrico de varios sistemas integrables dinámicos y finito-dimensionales de la mecánica clásica que están estrechamente vinculados, a saber:
-La generalización clásica de Euler top: el sistema Zhukovski-Volterra (ZV) que describe el movimiento libre de un giróstato, es decir, un cuerpo rígido que lleva un rotor simétrico cuyo eje es fijo al cuerpo.
- El caso del sistema integrable de Steklov-Lyapunov de las ecuaciones de Kirchhoff que describen el movimiento de un cuerpo rígido en un líquido incompresible ideal;
- Una generalización no trivial del sistema integrable de Steklov-Lyapunov encontrado por V. Rubanovskii que describe el movimiento de un giróstato en un fluido ideal en presencia de una circulación distinta de cero.
En nuestro estudio hemos obtenido una solución explícita de los sistemas de Zhukovski-Volterra [2] y de Steklov-Lyapunov en términos de funciones sigma- o theta y hemos realizado un análisis de la bifurcación de estos sistemas, así como de la generalización de Rubanovskii.
Hay que señalar que la solución del sistema de ZV fue dado por primera vez por V. Volterra, que, sin embargo, presenta sólo su estructura, pero no las fórmulas explícitas.
La tesis ofrece una nueva solución alternativa de este sistema mediante el uso de una parametrización algebraica del momento angular. Esto nos ha permitido encontrar polos y ceros del momento angular en forma algebraica. La parametrización también se utilizó para encontrar una solución explícita para el ángulo de precesión de Euler, y, en consecuencia, para resolver las ecuaciones de Poisson que describen el movimiento de un giróstato en el espacio.
Del mismo modo, al dar una interpretación geométrica de las variables de separación, y utilizando las funciones de las raíces Weierstrass, hemos reconstruido la solución thetafunctional de los sistemas de Steklov-Lyapunov, que fue dado por primera vez por F. Kotter en 1899 sin una derivación ([3]).
En el estudio de las bifurcaciones y las singularidades del sistema ZV hemos utilizado su estructura bi-Hamiltoniana ([1]). Según el nuevo método, la solución es crítica, si existe un parámetro de la familia correspondiente del paréntesis de Poisson, para que el rango de las paréntesis con este parámetro se disminuye. Aplicando las nuevas técnicas, basadas en la propiedad del sistema de ser bi-Hamiltoniana, construimos el diagrama de bifurcación del sistema ZV. También hemos encontrado los puntos de equilibrio del sistema, verificando la condición de no-degeneración de estos puntos, en el sentido de la teoría de singularidad de los sistemas hamiltonianos, determinando los tipos de puntos de equilibrio, y comprobando si son estables
o no. También hemos descrito el tipo topológico de los niveles comunes de los primeros integrales del sistema de ZV. Problemas similares se han discutido en muchas obras, pero el objetivo de nuestro trabajo es estudiar el sistema y demostrar las técnicas anteriormente mencionadas. Es un hecho notable que el uso de la propiedad bi-Hamilton permite responder a todas las preguntas anteriores, prácticamente sin ningún cálculo difícil.
El mismo método se aplica para construir el diagrama de bifurcación para el sistema de Steklov-Lyapunov, describir las zonas de movimiento real, y analizar la estabilidad de soluciones periódicas críticas.
A continuación, el análisis de bifurcación se extiende a la generalización Rubanovskii. Aquí la principal dificultad consiste en que el número de diferentes tipos del diagrama de bifurcación es bastante alto, por lo que sólo se describen las propiedades generales de las curvas de bifurcación, y el análisis de estabilidad se hace para trayectorias cerradas, y equilibrios .

Identiferoai:union.ndltd.org:TDX_UPC/oai:www.tdx.cat:10803/125114
Date28 November 2011
CreatorsBasak Gancheva, Inna
ContributorsFédorov, Yuri, Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
PublisherUniversitat Politècnica de Catalunya
Source SetsUniversitat Politècnica de Catalunya
LanguageEnglish
Detected LanguageSpanish
Typeinfo:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion
Format100 p., application/pdf
SourceTDX (Tesis Doctorals en Xarxa)
Rightsinfo:eu-repo/semantics/openAccess, L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by/3.0/es/

Page generated in 0.0026 seconds