Return to search

Rheology of porous rhyolite

I describe an experimental apparatus used to perform deformation experiments
relevant to volcanology. The apparatus supports low-load, high-temperature deformation
experiments under dry and wet conditions on natural and synthetic samples. The
experiments recover the transient rheology of complex (melt ± porosity ± solids) volcanic
materials during uniaxial deformation. The key component to this apparatus is a steel
cell designed for high-temperature deformation experiments under controlled water
pressure. Experiments are run under constant displacement rates or constant loads; the
range of accessible experimental conditions include: 25 - 1100 °C, load stresses 0 to 150
MPa, strain rates 10⁻⁶ to 10⁻² s⁻¹, and fluid pressures 0-150 MPa.
I present a suite of high-temperature, uniaxial deformation experiments performed
on 25 by 50 mm unjacketed cores of porous Φ∼0.8) sintered rhyolitic ash. The
experiments were performed at, both, atmospheric (dry) and elevated water pressure
conditions (wet). Dry experiments were conducted mainly at 900 °C, but also included a
suite of lower temperature experiments at 850, 800 and 750 °C. Wet experiments were
performed at ∼650 °C under water pressures of 1, 2.5, 3, and 5 MPa, and at a fixed PH2O
of ∼2.5 MPa for temperatures of ∼385, 450, and 550 °C. During deformation, strain is
manifest by shortening of the cores, reduction of porosity, flattening of ash particles, and
radial bulging of the cores. The continuous reduction of porosity leads to a dynamic
transient strain-dependent rheology and requires strain to be partitioned between a
volume (porosity loss) and a shear (radial bulging) component. The effect of increasing
porosity is to expand the window for viscous deformation for dry melts by delaying the
onset of brittle deformation by ∼50 °C (875 °C to 825 °C). The effect is more
pronounced in hydrous melts (∼0.67 — 0.78 wt. % H₂0) where the viscous to brittle
transition is depressed by ∼140 to 150 °C. Increasing water pressure also delays the onset
of strain hardening due to compaction-driven porosity reduction. These rheological data
are pertinent to volcanic processes where high-temperature porous magmas I liquids are
encountered (e.g., magma flow in conduits, welding of pyroclastic materials). / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate

Identiferoai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/2738
Date05 1900
CreatorsRobert, Geneviève
PublisherUniversity of British Columbia
Source SetsUniversity of British Columbia
LanguageEnglish
Detected LanguageEnglish
TypeText, Thesis/Dissertation
Format2593601 bytes, application/pdf
RightsAttribution-NonCommercial-NoDerivatives 4.0 International, http://creativecommons.org/licenses/by-nc-nd/4.0/

Page generated in 0.0022 seconds