Problema integrado de dimensionamento de lotes e corte de estoque : modelagem matemática e métodos de solução /

Orientador: Silvio Alexandre de Araujo / Banca: Maria do Socorro Nogueira Rangel / Banca: Kelly Cristina Poldi / Banca: Sonia Cristina Poltroniere Silva / Banca: Deisemara Ferreira / Resumo: Nesta tese, estamos interessados em tratar de maneira integrada dois conhecidos problemas da literatura. Esta integração é referida na literatura como problema integrado de dimensionamento de lotes e corte de estoque. A ideia consiste em considerar simultaneamente, as decisões relacionadas com ambos os problemas, de modo a capturar a interdependência entre estas decisões e, assim, obter uma melhor solução global. Propõe-se um modelo matemático geral para o problema integrado de dimensionamento de lotes e corte de estoque (GILSCS), que considera vários níveis de integração e nos permite classificar a literatura, em termos de modelos matemáticos, dos problemas integrados. A classificação é organizada a partir de dois principais aspectos de integração que são: a integração através dos períodos de tempo e a integração entre os níveis de produção. Em um horizonte de planejamento que considera vários períodos, o estoque fornece uma ligação entre os períodos. Esta integração, por períodos de tempo, constitui o primeiro tipo de integração. O problema geral também considera a produção em diferentes níveis: objetos são fabricados ou comprados e então são cortados para produzir peças menores e estas, por sua vez, constituem componentes para a produção dos produtos finais. A integração entre os diferentes níveis de produção consiste no segundo tipo de integração. A revisão da literatura também possibilita direcionar interessantes áreas para pesquisas futuras. O comportamento da solução... / Abstract: In this thesis, the subject of interest is in treating, in an integrated way, two wellknown problems in the literature. This integration is referred in the literature as the integrated lot-sizing and cutting stock problem. The basic idea is to consider, simultaneously, the decisions related to both problems so as to capture the interdependency between these decisions in order to obtain a better global solution. We propose a mathematical model for a general integrated lot-sizing and cutting stock (GILSCS) problem. This model considers multiple dimensions of integration and enables us to classify the current literature, in terms of mathematical models, in this field. The main classification of the literature is organized around two types of integration. In a planning horizon which consists of multiple periods, the inventory provides a link between the periods. This integration across time periods constitutes the first type of integration. The general problem also considers the production in different levels: objects are fabricated or purchased and then, they are cut to produce the pieces which are then assembled as components in the production of final products. The integration between these production levels constitutes the second type of integration. The literature review also enables us to point out interesting areas for future research. The behavior of a solution to this type of problem, with three levels of production and several time periods, is studied considering the ... / Doutor

Identiferoai:union.ndltd.org:UNESP/oai:www.athena.biblioteca.unesp.br:UEP01-000883161
Date January 2017
CreatorsMelega, Gislaine Mara.
ContributorsUniversidade Estadual Paulista "Júlio de Mesquita Filho" Instituto de Biociências, Letras e Ciências Exatas.
PublisherSão José do Rio Preto,
Source SetsUniversidade Estadual Paulista
LanguagePortuguese, English, Texto em inglês; resumos em português e inglês
Detected LanguagePortuguese
Typetext
Format150 f. :
RelationSistema requerido: Adobe Acrobat Reader

Page generated in 0.0015 seconds