Return to search

Food Quality Effects on Zooplankton Growth and Energy Transfer in Pelagic Freshwater Food Webs / Effekter av födokvalitet på djurplanktons tillväxt och på energiöverföringen i födovävar i sjöar

<p>Poor food quality can have large negative effects on zooplankton growth and this can also affect food web interactions. The main aims of this thesis were to study the importance of different food quality aspects in <i>Daphnia</i>, to identify potentially important differences among zooplankton taxa, and to put food quality research into a natural context by identifying the importance of food quality and quantity in lakes of different nutrient content.</p><p>In the first experiment, the RNA:DNA ratio was positively related to the somatic growth rate of <i>Daphnia</i>, supporting a connection between P content, RNA content, and growth rate. The second experiment showed that EPA was important for <i>Daphnia</i> somatic growth, and 0.9 µg EPA mg C<sup>-1</sup> was identified as the threshold below which negative effects on <i>Daphnia</i> growth occurred.</p><p>A field survey identified patterns in the PUFA content of zooplankton that could be explained by taxonomy and trophic position. <i>Cladocera</i> enriched EPA and ARA relative to seston, and <i>Copepoda</i> primarily enriched DHA. In a whole-lake experiment, gentle fertilization of an oligotrophicated reservoir increased the seston P content and the biomass of high quality phytoplankton (<i>Cryptophyceae</i>, high EPA content). This was followed by increases in zooplankton and fish biomasses.</p><p>An empirical model based on data from a literature survey predicted that food quantity is most important for zooplankton growth in oligotrophic lakes, and that food quality factors are more important in eutrophic lakes. Thus, zooplankton growth, and energy transfer efficiency in the food web, is predicted to be highest in mesotrophic lakes. The results predict that the strength and nature of food quantity and quality limitation of <i>Daphnia</i> growth varies with lake trophic state, and that some combination of food quantity and/or quality limitation should be expected in nearly all lakes.</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:uu-7811
Date January 2007
CreatorsPersson, Jonas
PublisherUppsala University, Department of Ecology and Evolution, Uppsala : Acta Universitatis Upsaliensis
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, text
RelationDigital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 292

Page generated in 0.0023 seconds