Return to search

Impedance and Stimulation Comfort of Knitted Electrodes for Neuromuscular Electrical Stimulation (NMES) : Influence of electrode construction and pressure application to the electrode

Neuromuscular electrical stimulation (NMES) is a modality of electrotherapy which is aiming to restore and improve muscle function by injecting small levels of current into the muscle using different types of electrodes. Advantages are seen in using textile electrodes which can be integrated into wearables. Previous research has been done for the development of textile stimulation electrodes. However, the focus has not been on the electrode construction itself. Therefore, the influence of electrode construction parameters of knitted electrodes as well as of the electrode condition, i.e. wet or dry, on the skin-electrode impedance and on the perceived stimulation comfort were analysed. Further, the application of pressure to the electrode was investigated. It was found that the electrode condition is the most important parameter for the electrode performance as a wet electrode showed a lower impedance and an improved stimulation comfort with a better skin contact. Followed by this, the pressure was the second most important factor, especially for dry electrodes. A higher pressure reduced the skin-electrode impedance and improved the skin contact in dry condition. Nevertheless, dry electrodes with a high applied pressure still performed worse than wet electrodes. Regarding the electrode design, the most important factor was the electrode size. A bigger size reduced the impedance. Nevertheless, for the application in NMES, a smaller electrode size is to be preferred as it improved the stimulation selectivity and thus, a lower NMES level was required to induce a plantarflexion without affecting the stimulation comfort. The other investigated construction parameters (binding, yarn density, shape) only showed minor influences on the electrode performance. Therefore, the possibilities of applying pressure to the electrode to improve the performance of dry textile electrodes should be further investigated.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hb-23896
Date January 2020
CreatorsEuler, Luisa
PublisherHögskolan i Borås, Akademin för textil, teknik och ekonomi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.003 seconds