Return to search

3D visualization of dynamic drive test data / 3D-visualisering av dynamiska körprovsdata

The modular product system of Scania CV AB provides the possibility of complete truck customization while using a limited number of interchangeable components. The high product modularity sets high demands on quality assurance of the delivered products. Geometry and layout assurance is a key factor of the quality control. Dynamic geometry assurance of trucks is accomplished by performing physical tests while measuring the movement of certain components. The results are then analysed in order to ensure that unwanted collisions does not occur during the operation of the vehicle. Test results are presented in test reports containing 2D plots of delta movements that occur at certain measurement points. Test reports are considered difficult to interpret and design mistakes have occurred due to misinterpretations. The purpose of the master thesis was to develop a 3D visualization method that can complement test reports and facilitate the understanding of test results. In this master thesis, several visualization methods were identified. The identified visualization methods were evaluated according to requirements derived from interviews held at Scania. One method was then chosen for further development. The thesis project focused on cabin movement visualization. However, the aim of the development was to create a general method that is applicable for all main components, e.g. chassis and engine. The result of the development was a visualization method including a MATLAB script and a CATIA macro. The MATLAB script filters raw test data for extreme positions of the cabin. These positions are then recalculated as transformation matrices and exported as an Excel sheet. The Excel sheet is further imported by the CATIA macro, which instantiates and positions user selected components into the previously found extreme position. The developed visualization method was then verified and confirmed of providing reliable results. Furthermore, benefits and drawbacks of the visualization method are discussed. The developed visualization method is then evaluated by the previous set requirements, showing that these are fulfilled. Even though more verification of the visualization method is suggested, it is concluded that the method can and should be implemented into the current workflow. / Scania CV AB’s modulära produktsystem medför möjligheten till komplett lastbilsanpassning samtidigt som endast ett begränsat antal utbytbara komponenter används. Den höga produktmodulariteten ställer höga krav på kvalitetssäkring av de levererade produkterna. Geometri och layoutsäkring är en nyckelfaktor inom säkerhetställandet av kvaliteten. Dynamisk geometrisäkran av lastbilar utförs genom att mäta rörelser av vissa komponenter under fysiska provningar. Resultaten analyseras sedan för att säkerställa att inga oönskande kollisioner inträffar under drift av fordonet. Provresultaten presenteras i provningsrapporter i form av 2D-plottar visande deltarörelser som inträffat vid specifika mätpunkter. Provningsrapporter anses vara svårtolkade och konstruktionsmisstag har inträffat på grund av feltolkningar av dessa. Syftet med examensarbetet var att utveckla en 3D-visualiseringsmetod som kan komplettera provningsrapporter och underlätta förståelsen av provresultaten. I detta examensarbete har flera visualiseringsmetoder identifierats. De identifierade visualiseringsmetoderna utvärderades sedan enligt krav härledda från intervjuer som hölls på Scania. En metod valdes därefter för vidare utveckling. Examensarbetet inriktades mot visualisering av hyttrörelser. Målet med utvecklingen var dock att skapa en generell metod för rörelser av alla huvudkomponenter, som till exempel axlar och motor. Resultatet av utvecklingen var en visualiseringsmetod som inkluderade ett MATLAB-script samt ett CATIA-makro. MATLAB-scriptet filtrerar råtestdata för extrema positioner av hytten. Dessa positioner räknas sedan om som transformationsmatriser och exporteras til ett Excel-ark. Excel-arket importeras sedan av CATIA-makrot till CATIA, som instansierar och positionerar användarvalda komponenter i de tidigare hittade extrempositionerna. Den utvecklade visualiseringsmetoden verifieras sedan och det bekräftas att tillförlitliga resultat fås fram. Dessutom diskuteras fördelarna och nackdelarna med visualiseringmetoden. Den utvecklade visualiseringsmetoden utvärderas sedan med de tidigare ställda kraven. Utvärderingen visar att dessa uppfylls. Även om ytterligare verifiering av visualiseringsmetoden föreslås, dras slutsatsen att metoden kan och bör implementeras i det aktuella arbetsflödet.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-176263
Date January 2015
CreatorsLindhe, Alexander, Szalontai, Julia
PublisherKTH, Maskinkonstruktion (Inst.)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
Relation2015:53 MKN 140

Page generated in 0.0027 seconds